93 research outputs found

    Crosstalk between vascular redox and calcium signaling in hypertension involves TRPM2 (Transient Receptor Potential Melastatin 2) cation channel

    Get PDF
    Increased generation of reactive oxygen species (ROS) and altered Ca2+ handling cause vascular damage in hypertension. Mechanisms linking these systems are unclear, but TRPM2 (transient receptor potential melastatin 2) could be important because TRPM2 is a ROS sensor and a regulator of Ca2+ and Na+ transport. We hypothesized that TRPM2 is a point of cross-talk between redox and Ca2+ signaling in vascular smooth muscle cells (VSMC) and that in hypertension ROS mediated-TRPM2 activation increases [Ca2+]i through processes involving NCX (Na+/Ca2+ exchanger). VSMCs from hypertensive and normotensive individuals and isolated arteries from wild type and hypertensive mice (LinA3) were studied. Generation of superoxide anion and hydrogen peroxide (H2O2) was increased in hypertensive VSMCs, effects associated with activation of redox-sensitive PARP1 (poly [ADP-ribose] polymerase 1), a TRPM2 regulator. Ang II (angiotensin II) increased Ca2+ and Na+ influx with exaggerated responses in hypertension. These effects were attenuated by catalase-polyethylene glycol -catalase and TRPM2 inhibitors (2-APB, 8-Br-cADPR olaparib). TRPM2 siRNA decreased Ca2+ in hypertensive VSMCs. NCX inhibitors (Benzamil, KB-R7943, YM244769) normalized Ca2+ hyper-responsiveness and MLC20 phosphorylation in hypertensive VSMCs. In arteries from LinA3 mice, exaggerated agonist (U46619, Ang II, phenylephrine)-induced vasoconstriction was decreased by TRPM2 and NCX inhibitors. In conclusion, activation of ROS-dependent PARP1-regulated TRPM2 contributes to vascular Ca2+ and Na+ influx in part through NCX. We identify a novel pathway linking ROS to Ca2+ signaling through TRPM2/NCX in human VSMCs and suggest that oxidative stress-induced upregulation of this pathway may be a new player in hypertension-associated vascular dysfunction

    Comparison of Tuberculin Skin test and Quantiferon immunological assay for latent Tuberculosis infection

    Get PDF
    Background. Correct identification of individuals with latent tuberculosis infection (LTBI) is a crucial element of the elimination strategy, allowing their adequate treatment. In addition to tuberculin skin test (TST), the Quantiferon test (QFT, based on whole blood γ-interferon release) had been recently proposed. Aim of the study is to compare this test to TST for identification of LTBI in a non-selected population, in order to verify their value in identifying truly infected individuals (entitled to receive preventive chemotherapy), and to exclude from treatment those having a positive TST for other reasons (e.g. after BCG vaccination). Methods. 136 consecutive persons (78 males, mean age 34±9 years) referred to the clinic for TST were recruited (78 born in low - or middle - income countries). Based on their history, the cases were divided into 4 groups: 1) recently traced contacts of whom 18 TST negative and 28 TST positive; 2) 22 screening subjects, all TST negative; 3) BCG vaccinated subjects (14); and 4) 54 subjects already undergoing treatment of LTBI for exposure to TB. Results. The overall agreement between TST and QFT was 72% (64% in TST positive and 88.4% in TST negative subjects). The proportion of TST positive/QFT negative BCG vaccinated individuals was 23.1%. The K coefficient was 0.474 in recently traced contacts, 0.366 in BCG vaccinated individuals and 0.451 overall. Conclusions. The study results suggest that agreement between TST and QFT is lower in TST positive than in negative subjects, being lower in individuals treated for LTBI. Quantiferon does not seem to have brought significant improvement in the diagnosis of LTBI

    Gene and environmental risk factors: interplay between CNR1 genetic variants cannabis use, childhood trauma and psychosis [abstract only]

    Get PDF
    Background: Cannabis use and childhood trauma have been proposed as environmental risk factors for psychosis and its known that gene-environment (G×E) interactions increase the risk of psychosis [1]. In particular, a recent finding suggests a link between genetic variants in the cannabinoid receptor type 1 (CNR1) gene, which encodes CB1 receptors and is expressed widely in the central and peripheral systems, and cannabis playing a role in the multifactorial pathogenesis of psychosis [2]. However, how the genetic variants interact with lifetime cannabis use and other environmental risk factors, such as childhood trauma, underlying psychosis remains challenging. Objective: To investigate whether there are associations of gene and environmental factors with psychosis, as well as G×E interactions in the relationship between lifetime cannabis use, childhood trauma, and single nucleotide variants (SNVs) of CNR1 and psychosis in a Brazilian sample. Methods: In a population-based case-control study nested in an incident study (STREAM, Brazil) [3], part of the WP2 EU-GEI consortium, 143 first-episode psychosis patients (FEPp) and 286 community-based controls of both sexes, aged between 16 and 64 years, were included over a period of three years. Thirteen SNVs of CNR1 gene (rs806380, rs806379, rs1049353, rs6454674, rs1535255, rs2023239, rs12720071, rs6928499, rs806374, rs7766029, rs806378, rs10485170, rs9450898), were genotyped from peripheral blood DNA using a custom Illumina HumanCoreExome-24 BeadChip genotyping arrays (GWAS Cardiff chip). Environmental adversities were evaluated using the Cannabis Experience and the Childhood Trauma Questionnaires. Data were analysed using a binary logistic regression model (Adj OR, 95% CI), including a binary outcome (community-based controls and FEPp), adjusted by sex, age, skin colour, years of education and tobacco smoking. Genotype frequencies were analysed under the dominant model (homozygous ancestral x heterozygous + homozygous variant). The significance level was set at α≤0.05. Results: Lifetime cannabis use and childhood trauma increased the risk for psychosis (OR=3.7; 2.6-6.195% CI, p<0.001; OR=3.0; 1.9-4.7 95% CI, p<0.001, respectively). We also showed that the presence of CNR1 rs12720071-T-allele moderated the association between lifetime cannabis use and psychosis (OR=6.0; 2.0-17.5 95% CI; p=0.001). Moreover, the combination of CNR1 rs12720071-T-allele carriers with childhood trauma also suggests a change in the risk of psychosis (OR=3.6; 1.4-9.0 95% CI; p=0.006). No significant associations between the environmental factors and other SNVs were found. Conclusions: We demonstrated a significant interaction between CNR1 rs12720071 SNV and two important environmental risk factors in their association with psychosis. T allele carriers of CNR1 rs12720071 had a higher risk of psychosis when lifetime cannabis use or childhood trauma were present. Our results suggest a G×E interaction involving the CNR1 gene, trauma and cannabis in psychosis. We will explore the associations between genetic and epigenetic markers of the CNR1 gene with environmental factors in larger and longer follow-up cohorts to better understand the mechanisms of endocannabinoid system dysfunction in the etiology of psychosis

    Comparison of Tuberculin Skin test and Quantiferon immunological assay for latent Tuberculosis infection

    Get PDF
    Background. Correct identification of individuals with latent tuberculosis infection (LTBI) is a crucial element of the elimination strategy, allowing their adequate treatment. In addition to tuberculin skin test (TST), the Quantiferon test (QFT, based on whole blood γ-interferon release) had been recently proposed. Aim of the study is to compare this test to TST for identification of LTBI in a non-selected population, in order to verify their value in identifying truly infected individuals (entitled to receive preventive chemotherapy), and to exclude from treatment those having a positive TST for other reasons (e.g. after BCG vaccination). Methods. 136 consecutive persons (78 males, mean age 34±9 years) referred to the clinic for TST were recruited (78 born in low - or middle - income countries). Based on their history, the cases were divided into 4 groups: 1) recently traced contacts of whom 18 TST negative and 28 TST positive; 2) 22 screening subjects, all TST negative; 3) BCG vaccinated subjects (14); and 4) 54 subjects already undergoing treatment of LTBI for exposure to TB. Results. The overall agreement between TST and QFT was 72% (64% in TST positive and 88.4% in TST negative subjects). The proportion of TST positive/QFT negative BCG vaccinated individuals was 23.1%. The K coefficient was 0.474 in recently traced contacts, 0.366 in BCG vaccinated individuals and 0.451 overall. Conclusions. The study results suggest that agreement between TST and QFT is lower in TST positive than in negative subjects, being lower in individuals treated for LTBI. Quantiferon does not seem to have brought significant improvement in the diagnosis of LTBI

    Vasoprotective effects of NOX4 are mediated via polymerase and transient receptor potential melastatin 2 cation channels in endothelial cells

    Get PDF
    Background: NOX4 activation has been implicated to have vasoprotective and blood pressure (BP)-lowering effects. Molecular mechanisms underlying this are unclear, but NOX4-induced regulation of the redox-sensitive Ca 2+ channel TRPM2 and effects on endothelial nitric oxide synthase (eNOS)-nitric oxide signalling may be important. Method: Wild-type and LinA3, renin-expressing hypertensive mice, were crossed with NOX4 knockout mice. Vascular function was measured by myography. Generation of superoxide (O 2- ) and hydrogen peroxide (H 2 O 2 ) were assessed by lucigenin and amplex red, respectively, and Ca 2+ influx by Cal-520 fluorescence in rat aortic endothelial cells (RAEC). Results: BP was increased in NOX4KO, LinA3 and LinA3/NOX4KO mice. This was associated with endothelial dysfunction and vascular remodelling, with exaggerated effects in NOX4KO groups. The TRPM2 activator, ADPR, improved vascular relaxation in LinA3/NOX4KO mice, an effect recapitulated by H 2 O 2 . Inhibition of PARP and TRPM2 with olaparib and 2-APB, respectively, recapitulated endothelial dysfunction in NOX4KO. In endothelial cells, Ang II increased H 2 O 2 generation and Ca 2+ influx, effects reduced by TRPM2 siRNA, TRPM2 inhibitors (8-br-cADPR, 2-APB), olaparib and GKT137831 (NOX4 inhibitor). Ang II-induced eNOS activation was blocked by NOX4 and TRPM2 siRNA, GKT137831, PEG-catalase and 8-br-cADPR. Conclusion: Our findings indicate that NOX4-induced H 2 O 2 production activates PARP/TRPM2, Ca 2+ influx, eNOS activation and nitric oxide release in endothelial cells. NOX4 deficiency impairs Ca 2+ homeostasis leading to endothelial dysfunction, an effect exacerbated in hypertension. We define a novel pathway linking endothelial NOX4/H 2 O 2 to eNOS/nitric oxide through PARP/TRPM2/Ca 2+ . This vasoprotective pathway is perturbed when NOX4 is downregulated and may have significance in conditions associated with endothelial dysfunction, including hypertension

    Chanzyme TRPM7 protects against cardiovascular inflammation and fibrosis

    Get PDF
    Aims: Transient Receptor Potential Melastatin 7 (TRPM7) cation channel is a chanzyme (channel + kinase) that influences cellular Mg2+ homeostasis and vascular signalling. However, the pathophysiological significance of TRPM7 in the cardiovascular system is unclear. The aim of this study was to investigate the role of this chanzyme in the cardiovascular system focusing on inflammation and fibrosis. Methods and results: TRPM7-deficient mice with deletion of the kinase domain (TRPM7+/Δkinase) were studied and molecular mechanisms investigated in TRPM7+/Δkinase bone marrow-derived macrophages (BMDM) and co-culture systems with cardiac fibroblasts. TRPM7-deficient mice had significant cardiac hypertrophy, fibrosis, and inflammation. Cardiac collagen and fibronectin content, expression of pro-inflammatory mediators (SMAD3, TGFβ) and cytokines [interleukin (IL)-6, IL-10, IL-12, tumour necrosis factor-α] and phosphorylation of the pro-inflammatory signalling molecule Stat1, were increased in TRPM7+/Δkinase mice. These processes were associated with infiltration of inflammatory cells (F4/80+CD206+ cardiac macrophages) and increased galectin-3 expression. Cardiac [Mg2+]i, but not [Ca2+]i, was reduced in TRPM7+/Δkinase mice. Calpain, a downstream TRPM7 target, was upregulated (increased expression and activation) in TRPM7+/Δkinase hearts. Vascular functional and inflammatory responses, assessed in vivo by intra-vital microscopy, demonstrated impaired neutrophil rolling, increased neutrophil: endothelial attachment and transmigration of leucocytes in TRPM7+/Δkinase mice. TRPM7+/Δkinase BMDMs had increased levels of galectin-3, IL-10, and IL-6. In co-culture systems, TRPM7+/Δkinase macrophages increased expression of fibronectin, proliferating cell nuclear antigen, and TGFβ in cardiac fibroblasts from wild-type mice, effects ameliorated by MgCl2 treatment. Conclusions: We identify a novel anti-inflammatory and anti-fibrotic role for TRPM7 and suggest that its protective effects are mediated, in part, through Mg2+-sensitive processes

    Matrix metalloproteinase-9 polymorphisms affect plasma MMP-9 levels and antihypertensive therapy responsiveness in hypertensive disorders of pregnancy

    Get PDF
    Abnormal matrix metalloproteinase (MMP)-9 levels may have a role in hypertensive disorders of pregnancy. We examined whether MMP-9 genetic polymorphisms (g.-1562C&gt;T and g.-90(CA)(13-25)) modify plasma MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 levels and the responses to antihypertensive therapy in 214 patients with preeclampsia (PE), 185 patients with gestational hypertension (GH) and a control group of 214 healthy pregnant (HP). Alleles for the g.-90(CA)(13-25) polymorphism were grouped L (low) (&lt;21 CA repeats) or H (high) (&gt;= 21 CA repeats). Plasma MMP-9 and TIMP-1 concentrations were measured by enzyme-linked immunosorbent assay. Plasma MMP-9 concentrations were not affected by genotypes or haplotypes in HP and PE groups, except for the g.-90(CA)(13-25) polymorphism: GH patients with the LH genotype for this polymorphism have higher MMP-9 levels than those with other genotypes. The T allele for the g.-1562C&gt;T polymorphism and the H4 haplotype (combining T and H alleles) are associated with GH and lack of responsiveness to antihypertensive therapy in GH. The H2 haplotype (combining C and H alleles) was associated with lack of responsiveness to antihypertensive therapy in PE, but not in GH. In conclusion, our results show that MMP-9 genetic variants are associated with GH and suggest that MMP-9 haplotypes affect the responsiveness to antihypertensive therapy in hypertensive disorders of pregnancy. The Pharmacogenomics Journal (2012) 12, 489-498; doi: 10.1038/tpj.2011.31; published online 19 July 2011Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Coordenadoria de Aperfeicoamento de Pessoal de Nivel Superior (CAPES

    Groundwater of Rome

    Get PDF
    This paper describes the contents of the new Hydrogeological Map of the City of Rome (1:50,000 scale). The map extends to the entire municipality (1285 km2) and is based on both the most recent scientific studies on the groundwater field and new survey activities carried out in order to fill the data gaps in several areas of the examined territory. The map is the result of a combination of different urban groundwater expertise and Geographic Information System (GIS)-based mapping performed using the most recent available data and has been produced with the intention of furnishing the City of Rome with the most recent and updated information regarding groundwater

    Effect of simvastatin in the autonomic system is dependent on the increased gain/sensitivity of the baroreceptors

    Get PDF
    A number of mechanisms have been proposed to explain the pleiotropic effect of statin therapy to reduce sympathetic outflow in cardiovascular disease. We tested the hypothesis that statin treatment could improve baroreflex gain-sensitivity triggered by morphological adaptations in the mechanoreceptor site, thus reducing sympathetic activity, regardless of arterial pressure (AP) level reduction. Male spontaneously hypertensive rats (SHR) were divided into control (SHR, n = 8) and SHR-simvastatin (5 mg/kg/day, for 7 days) (SHR-S, n = 8). After treatment, AP, baroreflex sensitivity (BRS) in response to AP-induced changes, aortic depressor nerve activity, and spectral analyses of pulse interval (PI) and AP variabilities were performed. Internal and external carotids were prepared for morphoquantitative evaluation. Although AP was similar between groups, sympathetic modulation, represented by the low frequency band of PI (SHR: 6.84 ± 3.19 vs. SHR-S: 2.41 ± 0.96 msec2) and from systolic AP variability (SHR: 3.95 ± 0.36 vs. SHR-S: 2.86 ± 0.18 mmHg2), were reduced in treated animals. In parallel, simvastatin induced an increase of 26% and 21% in the number of elastic lamellae as well as a decrease of 9% and 25% in the carotid thickness in both, external and internal carotid, respectively. Moreover, improved baroreceptor function (SHR: 0.78 ± 0.03 vs. SHR-S: 1.06 ± 0.04% mv/mmHg) was observed in addition to a 115% increase in aortic depressor nerve activity in SHR-S rats. Therefore, our data suggest that the reduction of sympathetic outflow in hypertension by simvastatin treatment may be triggered by structural changes in the carotid arteries and increased BRS in response to an improvement of the baroreceptors discharge and consequently of the afferent pathway of the baroreflex arch.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP- 01/00,009-0; 2012/20,141-5)Fundação E.J. ZerbiniConselho Nacional de Pesquisa e Desenvolvimento (CNPq
    • …
    corecore