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ABSTRACT 27 

Increased generation of reactive oxygen species (ROS) and altered Ca2+ handling cause 28 

vascular damage in hypertension. Mechanisms linking these systems are unclear but transient 29 

receptor potential melastatin 2 (TRPM2) could be important because TRPM2 is a ROS sensor 30 

and a regulator of Ca2+ and Na+ transport. We hypothesized that TRPM2 is a point of cross-31 

talk between redox and Ca2+ signaling in vascular smooth muscle cells (VSMC) and that in 32 

hypertension ROS mediated-TRPM2 activation increases [Ca2+]i through processes involving 33 

NCX (Na+/Ca2+ exchanger). VSMCs from hypertensive (HT) and normotensive individuals 34 

(NT) and isolated arteries from wildtype (WT) and hypertensive mice (LinA3) were studied. 35 

Generation of superoxide anion and hydrogen peroxide was increased in HT VSMCs, effects 36 

associated with activation of redox-sensitive Poly (ADP-ribose) polymerase 1 (PARP1), a 37 

TRPM2 regulator. Angiotensin II (Ang II) increased Ca2+ and Na+ influx with exaggerated 38 

responses in HT. These effects were attenuated by catalase−polyethylene glycol (PEG-39 

catalase) and TRPM2 inhibitors (2-APB, 8-Br-cADPR olaparib). TRPM2 siRNA decreased 40 

Ca2+ in HT VSMCs. NCX inhibitors (Benzamil, KB-R7943, YM244769) normalized Ca2+
 41 

hyper-responsiveness and MLC20 phosphorylation in HT VSMCs. In arteries from LinA3 42 

mice, exaggerated agonist (U46619, AngII, phenylephrine)-induced vasoconstriction was 43 

decreased by TRPM2 and NCX inhibitors. In conclusion activation of ROS-dependent PARP-44 

1-regulated TRPM2 contributes to vascular Ca2+ and Na+ influx in part through NCX. We 45 

identify a novel pathway linking ROS to Ca2+ signaling through TRPM2/NCX in human 46 

VSMCs and suggest that oxidative stress-induced upregulation of this pathway may be a new 47 

player in hypertension-associated vascular dysfunction.  48 

 49 

Key words: calcium signaling; vascular biology; sodium channels; reactive oxygen species; 50 

hypertension. 51 
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INTRODUCTION 52 

Hypertension is a multifactorial and complex disorder associated with abnormal vascular 53 

signaling1.  Uncontrolled generation of ROS, activation of redox-sensitive signaling pathways 54 

and increased intracellular free calcium concentration ([Ca2+]i) contribute to endothelial 55 

dysfunction, vascular hyperreactivity and structural remodeling in hypertension2-5. Signaling 56 

pathways involving ROS and Ca2+ may be interlinked through redox-sensitive cation channels. 57 

The transient receptor potential (TRP) superfamily constitutes a large group of redox-58 

regulated channels, including the TRP melastatin (TRPM) channels, of which there are 8 59 

isoforms (TRPM1-TRPM8)6-8. Of these, TRPM2 is the most highly redox-sensitive. It is  60 

permeable to both Ca2+ and Na+ with a selectivity for Ca2+ over Na+ of 0.5–1.6 2, 3 . TRPM2 is 61 

mainly activated by adenosine diphosphate ribose (ADPR), which has specific residues 62 

involved in binding to the NUDT9 homology (NUDT9-H) domain of TRPM2 to open the 63 

cation channel 4-6. In addition to adenosine diphosphate ribose (ADPR), Ca2+, hydrogen 64 

peroxide (H2O2), calmodulin, nicotinic acid adenine dinucleotide phosphate (NAADP), and 65 

oxidation of cysteine residues (Cys549) can positively modulate TRPM2, while AMP, acidic 66 

pH and nitration of tyrosine 1485 are negative regulators 7-10. H2O2 is the main ROS involved 67 

in TRPM2 activation, it can activate TRPM2 channel either directly via oxidation or indirectly 68 

via ADPR release after DNA damage 10-12. DNA damage is linked with high and rapid 69 

PolyADP-ribosylation activity, also known as PARylation, where Poly (ADP-ribose) 70 

polymerase (PARP) repeatedly catalyzes the transfer of successive units of ADPR to target 71 

proteins, leading to TRPM2 activation 13, 14. Although TRPM2 channels are present in VSMCs 72 

15 and endothelial cells 16,  there is a paucity of information on the functional role of TRPM2 73 

in the vascular system.  74 

Vascular smooth muscle cell handling of Ca2+ and Na+, which are critically involved in 75 

vascular function, involve various transporters, channels and exchangers. Of these the 76 
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plasmalemmal NCX is particularly important because its activity may be bimodal. In the 77 

forward mode NCX activation promotes Na+ influx and Ca2+ extrusion, however positive 78 

membrane potential and increased intracellular Na+ favor reverse mode NCX activation 79 

causing Ca2+ influx and increased [Ca2+]i 
17, 18.  Although reverse mode NCX has been 80 

demonstrated in endothelial cells 19, there has been debate regarding the influence of NCX 81 

operating in reverse mode in VSMCs and its role in vascular function is unclear 20, 21.  82 

Here we tested the hypothesis that ROS regulate TRPM2-induced Ca2+ and Na+ 83 

transport in VSMCs and that in hypertension oxidative stress causes increased activation of 84 

TRPM2 with augmented Ca2+ and Na+ influx, processes that may in turn influence NCX 85 

activation further increasing Ca2+ influx, critically important in vascular contraction and 86 

function.  Studies were performed using a multidisciplinary approach including human 87 

vascular tissue from normotensive and hypertensive subjects and LinA3 hypertensive mice. 88 

LinA3 mice express human prorenin in the liver and consequently have chronic activation of 89 

the renin angiotensin aldosterone system (RAAS). This is associated with a progressive 90 

increase in blood pressure and by adulthood (16-20 weeks) mice have established hypertension, 91 

with associated vascular dysfunction, cardiac hypertrophy and impaired renal function. In 92 

humans, essential hypertension develops gradually over many years, with associated Ang II-93 

related cardiovascular damage, effects that are also seen in LinA3 mice. Accordingly, LinA3 94 

mice are useful experimental models that recapitulate human essential hypertension.  95 

 96 

METHODS 97 

Please see supplemental text for detailed methods. We confirm that all supporting data are 98 

available in the supplemental text and upon request.  99 

Primary culture human vascular smooth muscle cells  100 
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VSMCs from normotensive (n=9) and hypertensive subjects (n=7) were studied (Table S1). 101 

Ethics approval was obtained from the West of Scotland Research Ethics Service 102 

(WS/12/0294). All subjects gave informed signed consent. Vascular tissue was obtained from 103 

NT and HT subjects undergoing elective maxillofacial surgery at the Craniofacial/Oral & 104 

Maxillofacial Unit, Queen Elizabeth University Hospital, Glasgow. Isolated small arteries were 105 

dissected and VSMCs cultured as we have previously described 22, 23. Hypertension was 106 

defined as blood pressure >140/90mmHg or a history of hypertension on antihypertensive 107 

treatment according to clinical notes. The definition of hypertension of >140/90 mmHg was 108 

based on JNC8 (when the study was commenced) and major guidelines (NICE, European 109 

Society of Cardiology/European Society of Hypertension, International Society of 110 

Hypertension and American College of Physicians/American Academy of Family Physicians) 111 

as recently reviewed 24. 112 

Experimental protocols. 113 

VSMCs were stimulated with Ang II in the absence and presence of pharmacological inhibitors 114 

of PARP1-TRPM2 (2-APB, olaparib, 8-Br-cADPR) and NCX (benzamil (forward/reverse 115 

mode) and KB-R7943, YM-244769 (reverse mode)). In some experiments, VSMCs were 116 

pretreated with PEG-catalase to reduce levels of ROS (H2O2). In some experiments, TRPM2 117 

was down regulated by siRNA. 118 

Measurement of ROS  119 

NADPH-mediated ROS generation in VSMCs was measured by enhanced lucigenin 120 

chemiluminescence. ROS production was expressed as relative luminescence units (RLU)/µg 121 

protein. H2O2 was assessed with Amplex Red assay kit. H2O2 levels were corrected by protein 122 

concentration.  123 

Calcium (Ca2+) and sodium (Na+) influx  124 
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Intracellular Ca2+ and Na+ levels were measured in VSMCs using the fluorescent Ca2+ 125 

indicator, Cal-520 acetoxymethyl ester (Cal-520/AM; Abcam; 10 μmol/L) and Asante 126 

NaTRIUM Green-2, (Abcam; 10 μmol/L) respectively.  127 

Real-time polymerase chain reaction (PCR) 128 

Total RNA was isolated. cDNA was generated from total RNA and real-time PCR was 129 

performed. 130 

Immunoblotting 131 

Total protein was extracted from VSMCs, separated by PAGE and transferred onto 132 

nitrocellulose membrane. Membranes were probed with primary antibodies (anti-myosin light 133 

chain (phospho S20), anti-TRPM2, anti-α tubulin, anti-β-actin). After incubation with 134 

secondary fluorescence-coupled antibodies, signals were visualized by an infrared laser 135 

scanner (Odyssey Clx, LICOR). Protein expression levels were normalized to loading controls 136 

and expressed as percentage (%) of the control. 137 

PARP Activity 138 

PARP activity was assessed based on the detection of biotinylated poly (ADP-ribose) deposited 139 

by PARP-1 onto immobilized histones.  140 

Mouse vascular functional studies 141 

Vascular functional studies were performed in isolated small arteries from male transgenic 142 

mice, which express human renin under the control of the tansthyretin promoter (LinA3 mice) 143 

and their WT littermates on an C57BL/6 background (aged 4-5 months) 25.  LinA3 mice 144 

develop hypertension over the course of their lifespan as we previously described 25. Systolic 145 

blood pressure measured by tail cuff methodology 25 was significantly higher in LinA3 mice 146 

versus WT counterparts at 16 weeks (Figure S1). Second-order branches (diameter of 150 – 147 

300 m) of mesenteric arteries were isolated from WT and LinA3 mice and mounted on a wire 148 

myograph. Contractile responses mediated by different vasoactive agonists, Ang II, U46619 149 
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and phenylephrine, were evaluated in endothelium-intact arteries. In some experiments, vessels 150 

were pretreated with TRPM2 inhibitors (2-APB, olaparib, 8-Br-cADPR) and NCX inhibitors 151 

(benzamil, KB-R7943).  152 

Statistical Analysis 153 

Data are expressed as the means ± standard error (SE). Statistical significance was determined 154 

by t-test or analysis of variance (ANOVA) and Tukey's post hoc test using GraphPad Prism 5 155 

software, as appropriate. Two-way ANOVA with Bonferroni post-test was used to compare 156 

maximum response (Emax) and negative logarithm to base 10 of the half maximal effective 157 

concentration (pD2) for concentration-response curves. p<0.05 was statistically significant. 158 

Using GraphPad Prism® our data passed in different normality (Anderson-Darling test, 159 

D'Agostino & Pearson test, Shapiro-Wilk test, Kolmogorov-Smirnov test) and variance tests. 160 

 161 

RESULTS 162 

Ang II-stimulated Ca2+ influx involves H2O2 and TRPM2 in VSMCs from HT patients. 163 

To establish whether VSMCs from HT individuals exhibit oxidative stress we measured ROS 164 

levels by assessing NADPH-dependent O2- production and H2O2 levels in VSMCs. As 165 

demonstrated in figure 1, basal levels of O2- and H2O2 are increased in VSMCs from HT 166 

patients when compared to cells from NT subjects (Figure 1 A, B). This increase in ROS was 167 

associated with a significant increase in Ca2+ transients induced by Ang II in NT and HT 168 

VSMCs, with significantly enhanced responses in HT VSMCs (Figure 1 C). PEG-catalase, 169 

which catalyzes H2O2 to H2O and O2, reduced [Ca2+]i in HT, without effect in NT VSMCs 170 

(Figure 1D), suggesting that Ca2+ transients are influenced by intracellular ROS. PEG-catalase 171 

did not completely abolish Ang II-induced effects, suggesting that other systems also play a 172 

role in enhanced Ca2+ responses in hypertension. The Ca2+ selective ionophore ionomycin (10-173 

6 mol/L) was used as a positive control in our experiments (Figure S2A).  174 
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To assess whether TRPM2 and PARP1 play a role in Ang II-induced Ca2+ influx, cells 175 

were pretreated with 2-APB and 8-Br-cADPR, which inhibit TRPM2 activity and olaparib, a 176 

PARP inhibitor. TRPM2 was also downregulated with siRNA. Enhanced Ang II induced Ca2+ 177 

influx in HT VSMCs was reduced in the presence of TRPM2/PARP inhibitors (Figure 1 E) 178 

and in VSMCs in which TRPM2 was downregulated by siRNA (Figure S3). In NT cells only 179 

2-APB reduced Ca2+ influx, whereas in HT cells, Ang II-stimulated Ca2+ transients were 180 

reduced by 2-APB, 8-Br-cADPR and olaparib.  181 

Multiple TRPM2 isoforms have been identified, including TRPM2-L (full-length 182 

functional TRPM2, 171 kDa) and several short splice variants (TRPM2-S, 95 kDa). To assess 183 

the TRPM2 isoforms in VSMCs, we evaluated mRNA expression by qPCR and found that the 184 

predominant form is TRPM2-L (Figure 2A), corresponding to a molecular size of 171 kDa 185 

(Figure 2B).   186 

As shown in figure 2B, TRPM2 was expressed in NT and HT VSMCs, with no 187 

difference in the expression profile between groups. Basal activity of the key protein involved 188 

in TRPM2 activation, PARP, was increased in HT VSMCs (Figure 2C) and in NT VSMCs in 189 

the presence of Ang II. These effects were attenuated by PEG-catalase in HT but not NT cells.  190 

To verify the ability of these drugs to inhibit TRPM2, we assessed effects of 191 

pharmacological inhibitors in human embryonic kidney (HEK) cells overexpressing TRPM2 192 

(TRPM2-HEK cells) (Figure S4). H2O2 stimulated Ca2+ influx in TRPM2-HEK cells with no 193 

effect in control HEK cells (Figure S4A). The increase in Ca2+ influx in TRPM2-HEK cells 194 

was reduced in the presence of TRPM2 inhibitors 2-APB, 8-Br-cADPR and olaparib (Figure 195 

S4B). 196 

Increased Na+ influx in VSMCs from HT subjects involves TRPM2  197 

TRPM2 is also permeable to Na+ which in turn may influence Ca2+ influx by altering NCX 198 

function. Na+ influx was measured in live VSMCs by FACS after stimulation with Ang II (10-199 
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7 mol/L). In cells isolated from NT patients no difference was observed in Na+ influx after Ang 200 

II stimulation (Figure 3A). On the other hand, Ang II increased Na+ influx in cells isolated 201 

from HT patients, effect not observed in the presence of the TRPM2 inhibitors olaparib and 8-202 

Br-cADPR (Figure 3B). In these experiments we only used olaparib and 8-Br-cADPR because 203 

they more selectively target PARP-TRPM2 than 2-APB.  204 

Na+ influx was also assessed by fluorescence microscopy and live cell imaging. The 205 

Na+ selective ionophore SQI-Pr 40 (4x10-5 mol/L) was used as a positive control (Figure S4B). 206 

Na+ influx was assessed by measuring [Na+]i in the absence (0 to 1 min) and presence of 150 207 

mM Na+ (1 to 10 min).  The switch in Na+ concentration (from low to high) induces a slow and 208 

sustained increase in Na+ influx. Using this approach, we measured the magnitude of Na+ influx 209 

in cells from NT and HT patients in basal conditions and in the presence of TRPM2 inhibitors. 210 

Addition of extracellular Na+ induced Na+ influx in cells from NT and HT subjects (Figure 211 

S5A). Maximal responses/AUC were higher in HT versus NT cells. TRPM2 and PARP 212 

inhibitors did not significantly alter Ang II-induced [Na+]i in NT cells (Figure S5B), but 213 

significantly reduced Na+ responses in HT VSMCs (Figure S5C). Na+ responses in the presence 214 

of inhibitors in cells from HT subjects (Figure S5C) were similar to responses in cells from NT 215 

individuals (Figure S5B). 216 

 Since NCX operation depends on the intracellular levels of Na+, we questioned if 217 

TRPM2-induced Na+ influx influences NCX function in reverse mode, which promotes Ca2+ 218 

influx 26. To address this, Ang II-stimulated Ca2+ influx was measured in VSMCs in the 219 

presence and absence of extracellular Na+. As shown in Figure 4A, increased Ca2+ transients 220 

in HT VSMCs were reduced in Na+-free conditions. 221 

To investigate the role of NCX in increased Ang II-stimulated Ca2+ influx in HT cells, 222 

Ca2+ was measured in the presence of NCX inhibitors. Figures 4B-C demonstrate that the non-223 
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specific NCX inhibitor benzamil and inhibitors of reverse mode of NCX, KB-R7993 and YM-224 

244769, reduced Ca2+ responses only in HT VSMCs.  225 

Redox-sensitive TRPM2 and NCX influence vascular signaling  226 

Phosphorylation of MLC is an important step involved in VSMC contraction, migration and 227 

cytoskeletal organization and is dependent on increased [Ca2+]i 
27. Considering the involvement 228 

of TRPM2/NCX in enhanced Ca2+ influx in VSMCs, we next evaluated whether MLC 229 

phosphorylation in cells stimulated with Ang II involves TRPM2 and NCX. Ang II induced a 230 

significant increase in MLC20 phosphorylation, with maximal responses at 5 minutes. Ang II-231 

induced MLC20 phosphorylation was significantly greater in HT versus NT VSMCs (Figure 232 

5A). Pretreatment of cells with 8-Br-cADPR, 2-APB or KB-R7943 attenuated Ang II-233 

stimulated phosphorylation of MLC20, especially in HT VSMCs (Figures 5 B-D). 234 

Vascular dysfunction in LinA3 HT mice involves TRPM2 and NCX 235 

To evaluate whether our cell-based findings are recapitulated in whole vessels, we studied 236 

intact small arteries from LinA3 mice, an experimental model of human hypertension as we 237 

previously reported 25, 28. Similar to human cells, basal ROS generation was higher in VSMCs 238 

from LinA3 mice versus WT (Figure S6). Ang II (60 min) increased ROS production to a 239 

greater extent in VSMCs from wildtype than LinA3 mice. Reasons for this may relate to the 240 

fact that in LinA3 mice, ROS generation and oxidative stress are already significantly increased 241 

in basal conditions, and perhaps the pro-oxidant system is saturated and the Ang II challenge 242 

is not able to further stimulate the system, at least at the time points studied.  243 

TRPM2 and NCX are present in mouse vessels, with greater expression in LinA3 mice 244 

versus WT controls (Figure S7A). To investigate whether TRPM2 and NCX influence vascular 245 

function, we assessed vascular functional responses to various vasoconstrictors in the absence 246 

and presence of pharmacological modulators. Vascular function was assessed by wire 247 

myography and showed that contractile responses to U46619 (Figure 6A), Ang II (Figure S7B) 248 



 
 

11 

and phenylephrine (Figure S8A) were increased in LinA3 mice versus controls. Exposure of 249 

vessels to 2-APB (Figure 6B, Figure S7C, 8B), olaparib (Figure 6C, Figure S8C) and 8-Br-250 

cADPR (Figure 6D, Figure S7D) attenuated agonist-stimulated hypercontractile responses in 251 

LinA3 mice. Inhibition of NCX (benzamil) (Figure 6E, Figure S7E) and NCX operating in 252 

reverse mode (KB-R7943) (Figure 6F) and YM-244769 (Figure S7F) reversed vascular 253 

dysfunction in HT mice. 254 

 255 

DISCUSSION 256 

Major findings from the present study demonstrate that vascular oxidative stress in 257 

hypertension is associated with increased ROS-regulated influx of Ca2+ and Na+ through 258 

TRPM2- and NCX-dependent mechanisms. These molecular processes influenced signaling in 259 

VSMCs from hypertensive patients and were associated with increased vascular contraction in 260 

experimental models of human hypertension. Our findings, in clinically-relevant tissue, 261 

identify a novel pathway involving redox-sensitive TRPM2, which modulates cellular Ca2+ and 262 

Na+ homeostasis in part through NCX, important in the regulation of vascular function in 263 

hypertension. 264 

ROS are increasingly being recognized as second messengers that regulate various 265 

downstream signaling molecules including Ca2+. On the other hand, Ca2+ controls 266 

mitochondrial- and Nox-derived ROS generation, indicating important interplay between Ca2+ 267 

and redox signaling 29. Furthermore cross-talk between mitochondrial ROS and endoplasmic 268 

reticulum Ca2+ form positive reciprocal loops involved in vascular injury and dysfunction 30. 269 

Oxidative stress promotes Ca2+ influx and intracellular Ca2+ mobilization, leading to increased 270 

[Ca2+]i and activation of Ca2+-dependent processes including contraction. Many molecular 271 

mechanisms have been implicated in ROS-regulated Ca2+ and vascular function, including 272 
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activation of L- and T-type Ca2+ channels, Ca2+/Mg2+ ATPase, SERCA, Ca2+ exchangers and 273 

members of the TRP channel family 30. 274 

Of the many types of Ca2+ channels regulated by ROS, TRPM2 is particularly important 275 

because it is highly sensitive to changes in intracellular levels of H2O2. However there is a 276 

paucity of information regarding molecular mechanisms linking ROS, TRPM2 and [Ca2+]i and 277 

the role of TRPM2 in vascular (dys)function in hypertension is unknown. In the present study 278 

we unravel some of these processes and show that in VSMCs from hypertensive patients, 279 

enhanced Ang II-induced Ca2+ influx is ameliorated by PEG-catalase, 2-APB, olaparib and 8-280 

Br-cADPR, suggesting that H2O2, TRPM2, PARP and ADPR contribute to increased [Ca2+]i 281 

in hypertension. These phenomena were associated with activation of pro-contractile signaling 282 

pathways, as demonstrated by increased phosphorylation of MLC20, effects reversed by 283 

TRPM2 inhibitors.  284 

Associated with oxidative stress and enhanced Ca2+ transients in HT VSMCs, was an 285 

increase in activation of redox-sensitive PARP1, a key regulator of TRPM2. This was 286 

ameliorated by PEG-catalase, indicating the importance of H2O2 in PARP1-related processes. 287 

Catalase did not abolish effects in NT, suggesting that other systems also influence PARP-1 288 

activity. Additionally, Ang II did not increase PARP activity in HT VSMCs, probably due to 289 

the already activated PARP in basal condition relative to the NT VSMCs. To assess the 290 

functional significance of these molecular processes, we studied intact arteries from mouse 291 

models that recapitulate human hypertension. Vascular contraction was enhanced in LinA3 292 

hypertensive mice, similar to what has been previously described in other models of Ang II-293 

induced hypertension 31, 32. Vascular hypercontractility in LinA3 mice was attenuated by 2-294 

APB, 8-br and olaparib. Together our human in vitro and experimental ex vivo studies highlight 295 

an important role for redox-regulated PARP1-TRPM2 modulation of Ca2+ that contributes to 296 

vascular hypercontractility in hypertension. In this context PARP1-regulated TRPM2 may be 297 
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an important point of crosstalk between vascular redox and Ca2+ signaling. In addition to 298 

influencing vascular function, redox-regulated TRPM2 plays a role in Ang II-induced insulin 299 

resistance through processes that involve CaMKII/JNK-dependent signaling pathway33. 300 

Hence, inhibition of TRPM2, besides improving vascular function in hypertension, may also 301 

ameliorate hypertension-associated insulin resistance. 302 

While results from our study suggest that activation of TRPM2 is involved in vascular 303 

damage, TRPM2 effects in myocardial ischemia/reperfusion (I/R) injury are less clear. Hiroi 304 

and colleagues reported that knocking out TRPM2 protects the heart against I/R injury 34, 305 

whereas Miller and colleagues demonstrated that TRPM2 protects against tissue damage 306 

following oxidative stress I/R injury, through processes involving FOXO3, Pyk2 307 

phosphorylation and inhibition of ROS production 35, 36. Reasons for these discrepancies are 308 

unclear but may be due to involvement of other TRPM isoforms given that both groups used 309 

global TRPM-2 KO mice. In particular, TRPM7 and TRPM8 have been shown to have 310 

cardiovascular protective anti-inflammatory and anti-fibrotic effects through processes that 311 

decrease ROS production 37-39. TRPM4, another TRPM isoform has been linked to NCX and 312 

Ca2+ transport in goblet cells 40. 313 

Although TRPM2 is typically characterized as a Ca2+ channel, it also regulates 314 

transmembrane Na+ transport. This was confirmed in our studies where increased [Ca2+]i was 315 

associated with enhanced Na+ influx in VSMCs from HT patients, an effect that was repressed 316 

by TRPM2 inhibitors. Moreover, changes in Ca2+ transients are dependent on Na+, because 317 

Na+ depletion prevented TRPM2-induced Ca2+ influx. These findings demonstrate tight 318 

coupling between VSMC Na+ and Ca2+ homeostasis. Mechanisms linking these processes may 319 

involve NCX, an antiporter that can operate in forward or reverse mode, depending on the 320 

combined effects of Na+ and Ca2+ gradients 17, 18.  Increased [Na+]i  activates the reverse mode 321 

of NCX, allowing Ca2+ entry via the exchanger into the VSMCs 41, 42. We found that inhibition 322 
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of reverse-mode NCX prevented an increase in Ca2+ influx and phosphorylation of MLC20 in 323 

HT VSMCs, suggesting that ROS-regulated TRPM2-mediated Ca2+ and Na+ influx may 324 

promote reverse-mode activation of NCX, which further increases Ca2+ influx in hypertension. 325 

In support of this notion, we observed that vessels from LinA3 hypertensive mice have 326 

increased RNA levels of NCX and that inhibition of reverse-mode NCX attenuated vascular 327 

hypercontractility. These processes only become evident in pathological conditions, possibly 328 

when oxidative stress is increased, because VSMCs from NT subjects and vessels from WT 329 

control mice did not exhibit NCX- regulated Ca2+ changes.   330 

Supporting our paradigm, others have shown in dendritic cells that NCX is a link 331 

between Na+ and Ca2+ influx 43. In addition, recent studies demonstrated that Na+ accumulates 332 

in the interstitium and promotes inflammation in part through NCX-related mechanisms 44-46. 333 

In dendritic cells, Na+ entry is mediated through an amiloride-inhibitable Na+ channel leading 334 

to Ca2+ influx via NCX operating in reverse mode. This leads to protein kinase C activation, 335 

phosphorylation of p47phox and ROS production, effects prevented by NCX inhibition41. These 336 

findings suggest that in dendritic cells NCX is upstream of ROS generation. In our paradigm, 337 

NCX was downstream of ROS generation. Together these findings indicate important cross-338 

talk between ROS, NCX, Ca2+ and Na+, but suggest that regulatory mechanisms differ in 339 

different cell types. It may also be possible that there is a feedforward system where redox-340 

sensitive NCX induces ROS production, which further promotes NCX activation 43. A potential 341 

mediator of this system is TRPM2. 342 

To probe TRPM2 in our study, we used various pharmacological agents that inhibit 343 

TRPM2 activation at multiple levels. In particular, 2-APB is a channel blocker, olaparib is a 344 

PARP inhibitor and 8-Br-cADPR is a cyclic ADP-ribose inhibitor. While these agents may 345 

have some non-specificity, we verified in TRPM2 overexpressing HEK cells that they inhibit 346 

ROS- induced Ca2+ influx in a TRPM2-dependent manner. We also found that downregulation 347 
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of TRPM2 by siRNA ameliorated Ca2+ responses in HT VSMCs. Accordingly, 348 

notwithstanding the limitations of pharmacological inhibitors, we believe that targeting 349 

TRPM2 using a multipronged approach, as we have done in the present study, is an acceptable 350 

model to interrogate TRPM2 in human VSMCs. However, we cannot exclude the possibility 351 

that a component of TRPM2-independent processes may also contribute to our findings. 352 

 In conclusion, we define a novel molecular pathway involving redox-sensitive TRPM2 353 

and NCX, which influence VSMC Na+ and Ca2+ homeostasis, important in the regulation of 354 

vascular function in hypertension. We suggest that TRPM2 may be an important point of cross-355 

talk between redox and cation (Ca2+/Na+) signaling in VSMCs and that in hypertension 356 

oxidative stress promotes activation of the TRPM2/NCX axis leading to perturbed Ca2+ 357 

handling and altered vascular function.  358 

 359 

PERSPECTIVES  360 

We demonstrate important interplay between redox and Ca2+ signaling through TRPM2 in 361 

VSMCs. In pathological conditions associated with oxidative stress, such as hypertension, 362 

ROS-regulated TRPM2 is activated leading to perturbed Ca2+ and Na+ handling in part through 363 

NCX. We define a novel TRPM2/NCX pathway that links key molecular players (ROS, Ca2+ 364 

and Na+) involved in vascular dysfunction in hypertension. Targeting dysregulated redox-365 

sensitive TRPM2 may ameliorate vascular dysfunction in hypertension. Our findings have 366 

clinical relevance because unlike most molecular studies that rely on cell lines or rodent 367 

VSMCs, we examined human VSMCs from clinically phenotyped patients. 368 
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NOVELTY AND SIGNIFICANCE  543 

What Is New? 544 

This study defines a novel molecular pathway involving redox-sensitive TRPM2 and NCX, 545 

which influence VSMC Na+ and Ca2+ homeostasis, important in the regulation of vascular 546 

function in hypertension. 547 

What Is Relevant? 548 

• Redox-sensitive TRPM2 and NCX play a role in the regulation of Ca2+ and Na+ influx 549 

in human vascular smooth muscle cells. 550 

• Increased vascular oxidative stress in hypertension promotes activation of redox-551 

regulated TRPM2, increased influx of Ca2+ and Na+ and activation of reverse mode 552 

NCX, which further increases [Ca2+]i. 553 

• We define a novel mechanism linking ROS, Ca2+ and Na+ through TRPM2 and NCX, 554 

which when perturbed, such as in hypertension, leads to vascular dysfunction.   555 

 556 

Summary 557 

TRPM2 may be an important point of cross-talk between redox and cation (Ca2+/Na+) signaling 558 

in VSMCs and that in hypertension oxidative stress promotes activation of the TRPM2/NCX 559 

axis leading to abnormal Ca2+ handling and altered vascular contraction.  560 

  561 
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FIGURE LEGENDS 562 

Figure 1. Increased Ang II-induced Ca2+ influx in VSMCs from HT subjects involves 563 

TRPM2 signaling.  ROS generation was measured in VSMCs from NT and HT subjects using 564 

lucigenin assay (A) and Amplex Red (B). Ca2+ influx (Cal-520 AM) (C-E) was measured in 565 

VSMCs in the presence of vehicle (1min) and Ang II 10-7 mol/l (2min). The area under the 566 

curve (AUC) was used for statistical analysis (C, D, E). Cells were pre-treated with 2-APB 567 

(3x10-5 mol/L), 8-Br-cADPR (10-6 mol/L), olaparib (10-6 mol/L) and PEG-Catalase (1000 568 

U/ml) for 30mins. Figures 1A, 1B - data are normalized by control, considered as 100 %. Bars 569 

represent the mean±SEM (n=6–9). *P<0.05 NT vs HT (A-C) and drug vs other groups (D-E).  570 

Figure 2. TRPM2 expression and PARP activity in HT VSMCs-role of H2O2. (A) mRNA 571 

expression of TRPM2 isoforms in human VSMCs. (B) TRPM2 expression in VSMCs from 572 

NT and HT subjects. (B) PARP activity, assessed by incorporation of biotinylated ADP-ribose 573 

to histone proteins, in VSMCs in basal and Ang II-stimulated conditions in the presence or 574 

absence of PEG-Catalase (1000 U/ml, 30min pre-treatment). Bars are mean±SEM (n=6–9). 575 

*P<0.05. NT: Normotensive. HT: Hypertensive 576 

Figure 3. Angiotensin-II induced Na+ influx in VSMCs from hypertensive subjects 577 

involves TRPM2 channel. Na+ influx was measured using the cytosolic Na+ indicator 578 

NaTRIUM Green™-2 AM in FACS. Cells were pre-treated (30mins) with 8-Br-cADPR (10-6 579 

mol/L) and olaparib (10-6 mol/L). Bars represent mean±SEM (n=6). *P<0.05.  580 

Figure 4. Increased Ang II-induced Ca2+ influx in VSMCs from HT subjects is not 581 

observed in Na+-free medium and is reversed by NCX inhibitors.  Ca2+ influx (Cal-520 582 

AM) (A-C) was measured in VSMCs. Influx of Ca2+ was assessed by measuring [Ca2+]i in the 583 

absence (1min) and presence of 150 mM Na+ (2min) (A) or in the presence of vehicle (1 min) 584 

or Ang II 10-7 mol/l (2min). To control the osmolarity, in the absence of sodium, choline 585 

chloride 150 mM was added to the HEPES. Bar graphs are presented as the area under the 586 
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curve (AUC). Cells were pre-treated with benzamil (10-6 mol/L), KB-R7943 (10-6 mol/L) and 587 

YM 244769 (10-6 mol/L) for 30min. Bars represent mean±SEM (n=6–8). *P<0.05. NT: 588 

Normotensive. HT: Hypertensive. 589 

Figure 5. Enhanced Ang II-induced phosphorylation of myosin light chain in VSMCs 590 

from HT subjects is reversed by TRPM2 inhibition. Myosin light chain (MLC) 591 

phosphorylation at serine 20 (PMLC(S20)) was evaluated by immunoblotting in VSMCs (A). 592 

VSMCs were pre-treated with 8-Br-cADPR (B), 2-APB (C) and KB-R7943 (D) for 30 min 593 

prior to addition of Ang II. Values express MLC phosphorylation and represent the meanSEM 594 

(n=5-6). *P<0.05. # 5 min Ang II vs 5 min Ang II with inhibitor. NT: Normotensive. HT: 595 

Hypertensive. 596 

Figure 6. TRPM2 and NCX inhibitors reverse hypertension-associated hypercontractility 597 

in mesenteric arteries. Concentration-response curves to U46619 were performed in 598 

mesenteric arteries from WT and hypertensive (LinA3) mice and studied by myography in the 599 

absence (A) and presence of 2-APB (3x10-5 mol/L) (B), olaparib (10-6 mol/L) (C), 8-Br-600 

cADPR (10-6 mol/L) (D), benzamil (10-6 mol/L) (E) and KB-R7943 (10-6 mol/L) (F) (30 min 601 

pretreatment).  U46619 tension curves (contraction) are expressed in mN and represent the 602 

meanSEM (n=6). *P<0.05 WT vs LinA3. # LinA3 vs LinA3 with inhibitor. 603 
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