438 research outputs found

    CT-based tumour response criteria compared after combined treatment for liver metastases of colorectal cancer

    Get PDF
    open6noPurpose: The aim of this analysis is to compare different tumour response criteria (TRC) after chemotherapy combined with bevacizumab in liver metastases from colorectal cancer (mCRC) to ascertain the best early prognostic indicator of response. Methods and Materials: 103 target liver metastases from 65 mCRC patients treated with chemoterapy plus bevacizumab were examined at the Istituto Oncologico Veneto IOV-IRCSS (March 2008-January 2013). All patients had baseline CT and at least one follow-up scan. Tumour response was retrospectively analyzed by two radiologists using RECIST1.1, modified Choi, and Chun morphologic criteria. Tumour response, classified as good (complete or partial response) or poor (stable or progressive disease), was compared with progression-free survival (PFS) at first follow-up (t1) and time of best response. Interobserver agreement and concordance between TRC were measured. Results: At t1, 32.31% showed a good response according to RECIST1.1 (median PFS 11.1), 84.62% according to Choi (median PFS 10.8). These percentages rose to 49.23% (median PFS 12.1) and 87.69% (median PFS 10.8), respectively, at the time of best response. According to Chun, 67.69% showed a good response at the time of best response (median PFS 10.8). The Choi criteria detected a higher proportion of good responders at t1, showing a better correlation with PFS; all methods correlated with PFS at the time of best response. Conclusion: The Choi criteria proved more consistent in the early detection of response in mCRC treated with chemotherapy plus bevacizumab, underscoring the importance of using these criteria in the early assessment of response to combined treatment.openopenVarotto, A.; Di Grazia, L.; Aliberti, C.; Bergamo, F.; Nardin, M.; Pomerri, F.Varotto, A.; Di Grazia, L.; Aliberti, C.; Bergamo, F.; Nardin, M.; Pomerri, Fabi

    Nano-enabled synthetic biology

    Get PDF
    Biological systems display a functional diversity, density and efficiency that make them a paradigm for synthetic systems. In natural systems, the cell is the elemental unit and efforts to emulate cells, their components, and organization have relied primarily on the use of bioorganic materials. Impressive advances have been made towards assembling simple genetic systems within cellular scale containers. These biological system assembly efforts are particularly instructive, as we gain command over the directed synthesis and assembly of synthetic nanoscale structures. Advances in nanoscale fabrication, assembly, and characterization are providing the tools and materials for characterizing and emulating the smallest scale features of biology. Further, they are revealing unique physical properties that emerge at the nanoscale. Realizing these properties in useful ways will require attention to the assembly of these nanoscale components. Attention to systems biology principles can lead to the practical development of nanoscale technologies with possible realization of synthetic systems with cell-like complexity. In turn, useful tools for interpreting biological complexity and for interfacing to biological processes will result

    Dynamic instance generation for few-shot handwritten document layout segmentation (short paper)

    Get PDF
    Historical handwritten document analysis is an important activity to retrieve information about our past. Given that this type of process is slow and time-consuming, the humanities community is searching for new techniques that could aid them in this activity. Document layout analysis is a branch of machine learning that aims to extract semantic informations from digitised documents. Here we propose a new framework for handwritten document layout analysis that differentiates from the current state-of-the-art by the fact that it features few-shot learning, thus allowing for good results with little manually labelled data and the dynamic instance generation process. Our results were obtained using the DIVA - HisDB dataset

    Investigation of fiber/matrix adhesion: test speed and specimen shape effects in the cylinder test

    Get PDF
    The cylinder test, developed from the microdroplet test, was adapted to assess the interfacial adhesion strength between fiber and matrix. The sensitivity of cylinder test to pull-out speed and specimen geometry was measured. It was established that the effect of test speed can be described as a superposition of two opposite, simultaneous effects which have been modeled mathematically by fitting two parameter Weibull curves on the measured datas. Effects of the cylinder size and its geometrical relation on the measured strength values have been analyzed by finite element method. It was concluded that the geometry has a direct influence on the stress formation. Based on the results achieved, recommendations were given on how to perform the novel single fiber cylinder test

    Drive-in torque for self-tapping screws into timber

    Get PDF
    Self-tapping screws have been widely used in timber constructions nowadays. Current practice considers self tapping screws perform best in connecting two members when they are fully threaded, however the drive-in resistance caused by the friction between woods and screws can potentially damage the screw and reduce the effectiveness of its applications. The relationship between their thread configuration and the drive-in torque force has not been investigated, and how would knots in the member affect the drive-in force remains in question. This study conducted a series of tests aiming to demonstrate the influence of thread configuration on the drive-in torque of screws. Two types of self-tapping screws and three different thread configurations were studied. The drive-in torque for partially threaded screws was found to be significantly slower than that of the fully threaded ones. The results showed knots can significantly influence the positioning of screw and increase the drive-in torque. The application of pre-drilled hole was found to be an effective way to minimise the influence of knots. This article points out that with appropriate consideration of thread configuration, partially threaded self-tapping screws can not only achieve the same efficiency with fully-threaded ones, they will also benefit from reduced drive-in torque force

    Dynamics of River Mouth Deposits

    Get PDF
    Bars and subaqueous levees often form at river mouths due to high sediment availability. Once these deposits emerge and develop into islands, they become important elements of the coastal landscape, hosting rich ecosystems. Sea level rise and sediment starvation are jeopardizing these landforms, motivating a thorough analysis of the mechanisms responsible for their formation and evolution. Here we present recent studies on the dynamics of mouth bars and subaqueous levees. The review encompasses both hydrodynamic and morphological results. We first analyze the hydrodynamics of the water jet exiting a river mouth. We then show how this dynamics coupled to sediment transport leads to the formation of mouth bars and levees. Specifically, we discuss the role of sediment eddy diffusivity and potential vorticity on sediment redistribution and related deposits. The effect of waves, tides, sediment characteristics, and vegetation on river mouth deposits is included in our analysis, thus accounting for the inherent complexity of the coastal environment where these landforms are common. Based on the results presented herein, we discuss in detail how river mouth deposits can be used to build new land or restore deltaic shorelines threatened by erosion

    The LuGRE project: a scientific opportunity to study GNSS signals at the Moon

    Get PDF
    The Lunar GNSS Receiver Experiment (LuGRE) is a joint NASA-Italian Space Agency (ASI) payload on the Firefly Blue Ghost Mission 1 with the goal to demonstrate GNSS-based positioning, navigation, and timing at the Moon. When launched, LuGRE will collect GPS and Galileo measurements in transit between Earth and the Moon, in lunar orbit, and on the lunar surface, and will conduct onboard and ground-based navigation experiments using the collected data. These investigations will be based on the observation of the data collected by a custom development performed by the company Qascom, based on the Qascom QN400-Space GNSS receiver. The receiver is able to provide, PVT solutions, the GNSS raw observables obtained by the real time operation, as well as snapshots of IF digital samples collected by the RF front-end at frequencies L1/E1 and L5/E5. These data will be the input for the different science investigations, that require then the development of proper analysis tools that will be the core of the ground segment during the mission. The current work done by the science team of NASA and ASI, which is supported by a research team at Politecnico di Torino, is planning the data acquisitions during the time windows dedicated to the LuGRE payload in the checkout, transit and surface mission phases

    Coherent Random Lasing Realized in Polymer Vesicles

    Get PDF
    We have demonstrated the realization of a coherent vesicle random lasing (VRL) from the dye doped azobenzene polymer vesicles self-assembled in the tetrahydrofuran-water system, which contains a double-walled structure: a hydrophilic and hydrophobic part. The effect of the dye and azobenzene polymer concentration on the threshold of random laser has been researched. The threshold of random laser decreases with an increase in the concentration of the pyrromethene 597 (PM597) laser and azobenzene polymer. Moreover, the scattering of small size group vesicles is attributed to providing a loop to boost the coherent random laser through the Fourier transform analysis. Due to the vesicles having the similar structure with the cell, the generation of coherent random lasers from vesicles expand random lasers to the biomedicine filed

    Sea-Level Rise: Projections for Maryland 2018

    Get PDF
    In fulfillment of requirements of the Maryland Commission on Climate Change Act of 2015, this report provides updated projections of the amount of sea-level rise relative to Maryland coastal lands that is expected into the next century. These projections represent the consensus of an Expert Group drawn from the Mid-Atlantic region. The framework for these projections is explicitly tied to the projections of global sea-level rise included in the Intergovernmental Panel on Climate Change Fifth Assessment (2014) and incorporates regional factors such as subsidence, distance from melting glaciers and polar ice sheets, and ocean currents. The probability distribution of estimates of relative sea-level rise from the baseline year of 2000 are provided over time and, after 2050, for three different greenhouse gas emissions pathways: Growing Emissions (RCP8.5), Stabilized Emissions (RCP4.5), and meeting the Paris Agreement (RCP2.6). This framework has been recently used in developing relative sea-level rise projections for California, Oregon, Washington, New Jersey, and Delaware as well as several metropolitan areas. The Likely range (66% probability) of the relative rise of mean sea level expected in Maryland between 2000 and 2050 is 0.8 to 1.6 feet, with about a one-in-twenty chance it could exceed 2.0 feet and about a one-in-one hundred chance it could exceed 2.3 feet. Later this century, rates of sea-level rise increasingly depend on the future pathway of global emissions of greenhouse gases during the next sixty years. If emissions continue to grow well into the second half of the 21st century, the Likely range of sea-level rise experienced in Maryland is 2.0 to 4.2 feet over this century, two to four times the sea-level rise experienced during the 20th century. Moreover, there is a one-in-twenty chance that it could exceed 5.2 feet. If, on the other hand, global society were able to bring net greenhouse gas emissions to zero in time to meet the goals of the Paris Climate Agreement and reduce emissions sufficient to limit the increase in global mean temperature to less than 2Celsius over pre-industrial levels, the Likely range for 2100 is 1.2 to 3.0 feet, with a one-in-twenty chance that it would exceed 3.7 feet. The difference in sea-level rise between these contrasting scenarios would diverge even more during the next century, with the failure to reduce emissions in the near term resulting in much greater sea-level rise 100 years from now. Moreover, recent research suggests that, without imminent and substantial reductions in greenhouse gas emissions, the loss of polar ice sheets-and thus the rate of sea-level rise-may be more rapid than assumed in these projections, particularly under the Growing Emissions scenario. These probabilistic sea-level rise projections can and should be used in planning and regulation, infrastructure siting and design, estimation of changes in tidal range and storm surge, developing inundation mapping tools, and adaptation strategies for high-tide flooding and saltwater intrusion

    The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs

    Full text link
    We present an interdisciplinary review of the generalized Cerenkov emission of radiation from uniformly moving sources in the different contexts of classical electromagnetism, superfluid hydrodynamics, and classical hydrodynamics. The details of each specific physical systems enter our theory via the dispersion law of the excitations. A geometrical recipe to obtain the emission patterns in both real and wavevector space from the geometrical shape of the dispersion law is discussed and applied to a number of cases of current experimental interest. Some consequences of these emission processes onto the stability of condensed-matter analogs of gravitational systems are finally illustrated.Comment: Lecture Notes at the IX SIGRAV School on "Analogue Gravity" in Como, Italy from May 16th-21th, 201
    • …
    corecore