1,077 research outputs found

    Numerical computation of transonic flows by finite-element and finite-difference methods

    Get PDF
    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined

    Combustion Processes in Hybrid Rocket Engines

    Get PDF
    In recent years, there has been a resurgence of interest in the development of hybrid rocket engines for advanced launch vehicle applications. Hybrid propulsion systems use a solid fuel such as hydroxyl-terminated polybutadiene (HTPB) along with a gaseous/liquid oxidizer. The performance of hybrid combustors depends on the convective and radiative heat fluxes to the fuel surface, the rate of pyrolysis in the solid phase, and the turbulent combustion processes in the gaseous phases. These processes in combination specify the regression rates of the fuel surface and thereby the utilization efficiency of the fuel. In this paper, we employ computational fluid dynamics (CFD) techniques in order to gain a quantitative understanding of the physical trends in hybrid rocket combustors. The computational modeling is tailored to ongoing experiments at Penn State that employ a two dimensional slab burner configuration. The coordinated computational/experimental effort enables model validation while providing an understanding of the experimental observations. Computations to date have included the full length geometry with and with the aft nozzle section as well as shorter length domains for extensive parametric characterization. HTPB is sed as the fuel with 1,3 butadiene being taken as the gaseous product of the pyrolysis. Pure gaseous oxygen is taken as the oxidizer. The fuel regression rate is specified using an Arrhenius rate reaction, which the fuel surface temperature is given by an energy balance involving gas-phase convection and radiation as well as thermal conduction in the solid-phase. For the gas-phase combustion, a two step global reaction is used. The standard kappa - epsilon model is used for turbulence closure. Radiation is presently treated using a simple diffusion approximation which is valid for large optical path lengths, representative of radiation from soot particles. Computational results are obtained to determine the trends in the fuel burning or regression rates as a function of the head-end oxidizer mass flux, G=rho(e)U(e), and the chamber pressure. Furthermore, computation of the full slab burner configuration has also been obtained for various stages of the burn. Comparisons with available experimental data from small scale tests conducted by General Dynamics-Thiokol-Rocketdyne suggest reasonable agreement in the predicted regression rates. Future work will include: (1) a model for soot generation in the flame for more quantitative radiative transfer modelling, (2) a parametric study of combustion efficiency, and (3) transient calculations to help determine the possible mechanisms responsible for combustion instability in hybrid rocket motors

    Parametric analysis of response function in modeling combustion instability by a quasi-1d solver

    Get PDF
    A parametric study of the CVRC combustor test case is carried out by a quasi-1D Eulerian solver including a pressure lag response function which is used to take into account the unsteady heat release, typically driving combustion instability phenomena. The parameters under investigation are those defining the selected response function that are its amplitude and characteristic time lag. Both stable and unstable cases have been obtained for a wide range of amplitude and time lag which allow to investigate limit cycles at moderate amplitude. The extension of the approach to even higher amplitude of limit cycles of the order of those actually obtained in CVRC is presently in progres

    Convergence acceleration of implicit schemes in the presence of high aspect ratio grid cells

    Get PDF
    The performance of Navier-Stokes codes are influenced by several phenomena. For example, the robustness of the code may be compromised by the lack of grid resolution, by a need for more precise initial conditions or because all or part of the flowfield lies outside the flow regime in which the algorithm converges efficiently. A primary example of the latter effect is the presence of extended low Mach number and/or low Reynolds number regions which cause convergence deterioration of time marching algorithms. Recent research into this problem by several workers including the present authors has largely negated this difficulty through the introduction of time-derivative preconditioning. In the present paper, we employ the preconditioned algorithm to address convergence difficulties arising from sensitivity to grid stretching and high aspect ratio grid cells. Strong grid stretching is particularly characteristic of turbulent flow calculations where the grid must be refined very tightly in the dimension normal to the wall, without a similar refinement in the tangential direction. High aspect ratio grid cells also arise in problems that involve high aspect ratio domains such as combustor coolant channels. In both situations, the high aspect ratio cells can lead to extreme deterioration in convergence. It is the purpose of the present paper to address the reasons for this adverse response to grid stretching and to suggest methods for enhancing convergence under such circumstances. Numerical algorithms typically possess a maximum allowable or optimum value for the time step size, expressed in non-dimensional terms as a CFL number or vonNeumann number (VNN). In the presence of high aspect ratio cells, the smallest dimension of the grid cell controls the time step size causing it to be extremely small, which in turn results in the deterioration of convergence behavior. For explicit schemes, this time step limitation cannot be exceeded without violating stability restrictions of the scheme. On the other hand, for implicit schemes, which are typically unconditionally stable, there appears to be room for improvement through careful tailoring of the time step definition based on results of linear stability analyses. In the present paper, we focus on the central-differenced alternating direction implicit (ADI) scheme. The understanding garnered from this analyses can then be applied to other implicit schemes. In order to systematically study the effects of aspect ratio and the methods of mitigating the associated problems, we use a two pronged approach. We use stability analyses as a tool for predicting numerical convergence behavior and numerical experiments on simple model problems to verify predicted trends. Based on these analyses, we determine that efficient convergence may be obtained at all aspect ratios by getting a combination of things right. Primary among these are the proper definition of the time step size, proper selection of viscous preconditioner and the precise treatment of boundary conditions. These algorithmic improvements are then applied to a variety of test cases to demonstrate uniform convergence at all aspect ratios

    An Approach to Improved Credibility of CFD Simulations for Rocket Injector Design

    Get PDF
    Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by simulating the sensitivity of performance and injector-driven thermal environments to. the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process.. This paper documents the status of an effort to understand and compare the predictive capabilities and resource requirements of a range of CFD methodologies on a set of model problem injectors. Preliminary results from a steady Reynolds-Average Navier-Stokes (RANS), an unsteady Reynolds-Average Navier Stokes (URANS) and three different Large Eddy Simulation (LES) techniques used to model a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants are presented. Initial observations are made comparing instantaneous results, corresponding time-averaged and steady-state solutions in the near -injector flow field. Significant differences in the flow fields exist, as expected, and are discussed. An important preliminary result is the identification of a fundamental mixing mechanism, accounted for by URANS and LES, but missing in the steady BANS methodology. Since propellant mixing is the core injector function, this mixing process may prove to have a profound effect on the ability to more correctly simulate injector performance and resulting thermal environments. Issues important to unifying the basis for future comparison such as solution initialization, required run time and grid resolution are addressed

    Aluminium metallisation for interdigitated back contact silicon heterojunction solar cells

    Get PDF
    Back contact silicon heterojunction solar cells with an efficiency of 22 were manufactured, featuring a simple aluminium metallisation directly on the doped amorphous silicon films. Both the open circuit voltage and the fill factor heavily depend on the parameters of the annealing step after aluminium layer deposition. Using numerical device simulations and in accordance with the literature, we demonstrate that the changes in solar cell parameters with annealing can be explained by the formation of an aluminium silicide layer at temperatures as low as 150 C, improving the contact resistance and thus enhancing the fill factor. Further annealing at higher temperatures initialises the crystallisation of the amorphous silicon layers, yielding even lower contact resistances, but also introduces more defects, diminishing the open circuit voltag

    Cyber Space Odyssey: A Competitive, Team-Oriented Serious Game in Computer Networking

    Get PDF
    Cyber Space Odyssey (CSO) is a novel serious game supporting computer networking education by engaging students in a race to successfully perform various cybersecurity tasks in order to collect clues and solve a puzzle in virtual near-Earth 3D space. Each team interacts with the game server through a dedicated client presenting a multimodal interface, using a game controller for navigation and various desktop computer networking tools of the trade for cybersecurity tasks on the game\u27s physical network. Specifically, teams connect to wireless access points, use packet monitors to intercept network traffic, decrypt and reverse engineer that traffic, craft well-formed and meaningful responses, and transmit those responses. Successful completion of these physical network actions to solve a sequence of increasingly complex problems is necessary to progress through the virtual, story-driven adventure. Use of the networking tools reinforces networking theory and offers hands-on practical training requisite for today\u27s cyberoperators. This paper presents the learning outcomes targeted by a classroom intervention based on CSO, the design and implementation of the game, a pedagogical overview of the overall intervention, and four years of quantitative and qualitative data assessing its effectiveness

    Number partitioning as random energy model

    Full text link
    Number partitioning is a classical problem from combinatorial optimisation. In physical terms it corresponds to a long range anti-ferromagnetic Ising spin glass. It has been rigorously proven that the low lying energies of number partitioning behave like uncorrelated random variables. We claim that neighbouring energy levels are uncorrelated almost everywhere on the energy axis, and that energetically adjacent configurations are uncorrelated, too. Apparently there is no relation between geometry (configuration) and energy that could be exploited by an optimization algorithm. This ``local random energy'' picture of number partitioning is corroborated by numerical simulations and heuristic arguments.Comment: 8+2 pages, 9 figures, PDF onl
    • …
    corecore