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In recent years, there has been a resurgence of interest in the development of
hybrid rocket engines for advanced launch vehicle ai)plicati(ms. Hybrid propulsion
systems use a solid fllel such as hydroxyl-terminated polyt)utadiene (HTPB) along
with a gaseous/liquid oxidizer. The perfomance of hybrid combustors depend on the
convective and radiative heat fluxes to the fuel surface, the rate of pyrolysis in the solid-
phase and the turbulent combustion processes in the gaseous-phase. These processes in
combination specify the regression rates of the fuel surface and thereby the utilization

etficiency of the fllel. In this paper, we employ computational fluid dynamic techniques
in order to gain a quantitative mlderstanding of the physical trends in hybrid rocket
CO111|) US t ors.

The computational modeling is tailored to ongoing experiments at Penn State that
employ a 2D slab-burner configuration. The co-ordinated computational/experimental
effort enables model validation while providing an understanding of the exl)erimental
observations. Computations to date have included the full-length geometry with and
without the aft-nozzle section as well as shorter-length domains for extensive parametric
characterization. HTPB is used as the fllel with 1,3 butadiene being taken as th,'
gaseous product of the pyrolysis. Pure gaseous oxygen is taken as the oxidizer. The
fllel regression rate is specified using an Arrhenius rate reaction, while the fuel surface
temperature is giw_n by an energy balance involving gas-phase convection and radiation
as well as thermal conduction in the solid-phase. For the gas-phase combustion, a two-
step global reaction set is used. The standard k - : model is used for turbulence closure,.

Radiation is presently treated using a simple diffusion approximation which is valid fi_r
large optical path lengths, representative of radiation from soot particles.

Computational results are obtained to deterlnine the trends in the fllel burning
or regresmon rates as a flmction of the head-end oxidizer mass flux, G = p_U_, and
the chamber pressure. Furthermore, computations of the flfll slab-burner configuration
have also been obtained for various stages of the burn. Comparisons with available
exI)erimental data from small-scale tests conducted by General Dynamics-Thiok()l-
Rocketdyne suggest reasonable agreement in the predicted regression rates. Future work
will include: (1) a model for soot generation in the flame for more quantitative radiative
transfer modeling, (2) parametric study of combustion efficiency and (3) transient
calculations to hel I) determine the possible mechanisms responsible for combustion
instability in hybrid rocket motors.
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Presentation Outline

• Introduction

Research Issues

Penn State Slab Burner Configuration

• Physical Modeling

Gas/Surface Coupling

Radiation

• Computational Results

Representative Solutions

Characterization of Regression Rates

• Conclusions
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Introduction

• Advantages of Hybrid Propulsion

Reduced Cost

Safety

Improved Reliability

Thrust Tailoring

Environmentally Friendly

• Hybrids Development

Intermittent Testing Since 60's

JIRAD

AMROC

France & Japan

Small-Scale Testing

JPL/Strand _t al.

ONERA

UAH

Penn State
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Research Issues

Characterization of Fuel Surface Regression

Fuel Pyrolysis and Surface Chemistry

Heat Fluxes - Convection and Radiation

• Combustion Efficiency

• Combustion Instability

Modeling Issue:

Boundary Layer vs. Navier-Stokes
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Schematic of Hybrid Rocket Motor
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Experimental Configuration
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Experimental Configuration

• Test Conditions

Fuel- HTPB

Oxidizer- GOX

Pressures- 300 to 900 psi

GOX Flow Rates - 0.2 to 0.8 ibm�8
O'I

GOX Mass Flux (c = pu) -_ to 0.5 tbm/in_-
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Physical Modeling

• Gas-Phase Navier-Stokes Equations

Standard k-_ Model

• Gas-Phase/Combustion Model:

Butadiene--Product of Pyrolysis

Two-Step Global Kinetics Model

C4H6 + 3.50_ _ 4C0 + 3H20

CO + 0.502 _ COs

• Solid-Phase/Pyrolysis:

Arrhenius Pyrolysis Rate

psrb = Asexp( _s )
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Solid/Gas Coupling

• Surface Mass Balance

pv -- -- flsrb

• Surface Energy Balance

__OT
Oy + Q_d + pvh -

i=1 a

-- psrbh8
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Radiation Modeling

• Gaseous Molecular Radiation

Optically Thin Approximation

= V" 4°k"JT_i
Q_a,k .z__r: Ti." bvi,j-.k

• Particulate (Soot) Radiation

Optically Thick Approximation

OT

Q,od,k = - ),R--_

' where _R = _T a
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Representative Solution

Grid Geometry
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Representative Solution

Axial Velocity

100 m/s

Mach Number Contours
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Representative Solutions

Carbon Dioxide Mass Fraction

0.7

GOX Mass Fraction

O.1
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Representative Results

Centerline Variation of Mass Flux (G)
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Representative Results
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Parametric Studies

Different Stages in Burn

Start of Burn 3500 K
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Parametric Studies

Different Stages in Burn

W/O Radiation
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Parametric Studies

Different Stages in Burn

With Radiation/Optically Thick
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Parametric Studies

Effect of GOX Flow Rate

Temperature Contours
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Parametric Studies

Effect of GOX Flow Rate

W/O Radiation
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Parametric Studies

Effect of GOX Flow Rate

With Radiation/Optically Thick
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Parametric Characterization of

Fuel Surface Regression
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Conclusions

• Navier-Stokes Analysis of Hybrid Motor

Planar Slab Burner Configuration

Arrhenius-Rate for Pyrolysis

Global Chemistry

Turbulence Model

'Thick/Thin' Radiation Model

• Computational Results

Parametric Characterization

Fuel Surface Temperatures 900 to 1100 K

Regression Rates of 0.01 to 0.07 in/s

Radiative Fluxes- Significant Contribution

Ongoing/Future Work:

Radiation Properties- Soot Concentration

Combustion Efficiency - Downstream Mixing

Combustion Instability- Transient Calculations
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