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The performance of Navier-Stokes codes are influenced by several phenomena. For
example, the robustness of the code may be compromised by the lack of grid resolution,
by a need for more precise initial conditions or. because all or part of the flowfield
lies outside the flow regime in which the algorithm converges efficiently. A primary
example of the latter effect is the presence of extended low Mach number and/or low
Reynolds number regions which cause convergence deterioration of time marching
algorithms. Recent research into this problem by several workers including the present
authors ha_ largely negated this difficulty through the introduction of time-derivative

preconditioning. In the present paper, we employ the preconditioned algorithm to
address convergence difficulties arising from sensitivity to grid stretching and high aspect
ratio grid cells.

Strong _;rid stretching is particularly characteristic of turbulent flow calculations
where the grid must be refined very tightly in the dimension normal to the wall, without
a similar refinement in the tangential direction. High aspect ratio grid cells also arise in
problems that involve high aspect ratio domains such as combustor coolant channels.
In both situations, the high aspect ratio cells can lead to extreme deterioration in
convergence. It is the purpose of the present paper to address the reasons for this
adverse response to grid stretching and to suggest methods for enhancing convergence
under such circumstances.

Numerical algorithms typically possess a maximum allowable or optimum value
for the time step size, expressed in non-dimensional terms as a CFL number or von-

Neumann number (VNN). In the presence of high aspect ratio cells, the smallest
dimension of the grid cell controls the time step size causing it to be extremely small,
which in turn results in the deterioration of convergence behaviour. For explicit schemes,

this time step limitation cannot be exceeded without violating stability restrictions of
the scheme. On the other hand, for implicit schemes, which are typically unconditionally
stable, there appears to be room for improvement through careful tailoring of the time-
step definition based on results of linear stability analyses. In the present paper, we
focus on the central-differenced alternating direction implicit (ADI) scheme. The
understanding garnered from this analyses can then be applied to other implicit
schemes.

In order to systematically study the effects of aspect ratio and the methods of
mitigating the associated problems, we use a two pronged approach. We use stability
analyses as a tool for predicting numerical convergence behavior and numerical
experiments on simple model problems to verify predicted trends. Based on these
analyses, we determine that efficient convergence may be obtained at all aspect ratios
by getting a combination of things right. Primary among these are the proper definition
of the time step size, proper selection of viscous preconditioner and the precise treatment

of boundary conditions. These algorithmic improvements are then applied to a variety of
test cases to demonstrate uniform convergence at all aspect ratios.
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Philosophy of Grid Aspect Ratio Study

• Assessment of High Aspect Ratio Problem

-- Disparate propagation speeds in X and Y

• Stability Theory

-- Scalar Convection-Diffusion Equation

-- Euler Equations

Navier-Stokes Equations

• Numerical Convergence Studies

Simple Model Problems

Realistic Flow Problems

• Improved Algorithm to Provide Aspect Ratio Control

Precise Time-Step Definition

Viscous Preconditioning

Boundary Condition Implementation
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The Navier-Stokes Equations

OQ, OE OF
F -_ +-_x+ -_y =H+L(Q,_)

• Solution Vector

Qv=(p, u, v, T) T

• Preconditioning Matrix

F __

1/ec 2 0 0 0 )

u/ec _ p 0 0

v/ec 2 0 p 0
h+ ½(_,-_+__)

_c_ 1 pu pv pC v

• Parameter e

-- Activates Inviscid and Viscous Preconditioning

Value Depends on Local Mach Number and Cell

Reynolds Number
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Numerical Solution Procedure

• Central-Differenced ADI Algorithm

S -_ Ox ox R_ S-1 S+ Oy o]OyP_y _Q_ = -n"

• Approximate factorization errors control convergence

behavior.

• Optimum CFL_,+c is typically between 1 and 10.

Other inviscid and viscous time scales are opti-

mized by the preconditioning matrix.
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Time-Step Definition

• Local Time-Stepping or Constant CFL Condition

Max ( CFL_, CFLy )=CFL

• For high aspect ratios, CFL_ and CFL_ become dis-

parate

CFLy = CFL, CFL_ =CFL/AR
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Euler Stability Analysis

• Aspect Ratio (AR) of Unity
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Euler Stability Analysis

Aspect Ratio (AR) of 100
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Euler Stability Analysis

• Aspect Ratio (AR) of 100
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New Time-Step Definition

• Conclusions from Stability Analysis:

Min-CFL Preferable to Max-CFL

Efficient Convergence at all AR

• Minimum-CFL Definition

Min ( CFL_, CFL u )= CFL

• For high aspect ratios,

CFL u = CFL • AR, CFL_, = CFL
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Implementation of Boundary Conditions

• Extrapolation vs Characteristic

Both work well for small CFL'S

Characteristics usually superior at high CFL's

• Proper MOC Implementation:

Implicit procedures

u Boundary conditions applied before approximate fac-

torization

Consistent order of accuracy: LHS / RHS
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High Aspect Ratio Convergence--Inviscid Duct
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Navier-Stokes Analysis

• Parameter E controls low Re number convergence

Viscous terms limit time step at high AR

c chosen to optimize inviscid and viscous modes simul-

taneously

• Obvious choice: E = f (Max-CFL, Max-VNN)

• Scalar Stability Results: E = f (Min-CFL, Min-VNN)
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Navier-Stokes Analysis

• Min-CFL, Min-VNN Stability Result
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Navier-Stokes Analysis

Conclusions from Stability Results:

Vector system different from scalar equation

Approximate factorization error CFL_ • VNN_

convergence

limits

• Viscous preconditioner, e = f (Min-CFL,Max-VNN)

Maintains Min-CFL for 'inviscid' modes

Uses traditional Max-VNN definition for 'viscous' modes
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Navier-Stokes Analysis

• Min-CFL, Max-VNN Stability Result
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High Aspect Ratio Convergence_Viscous Duct
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Hydrogen/Oxygen Shear-Layer

Stretched Grid and Solution
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Hydrogen/Oxygen Shear-Layer

Convergence
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HighReynolds Number Boundary Layer

Convergence_Stretched Grid
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High Reynolds Number Boundary Layer

Blasius Solution
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High Reynolds Number Boundary Layer

Turbulent Velocity Profile
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Turbulent Nozzle Computation

Stretched Grid and Solution
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Turbulent Nozzle Computation

Convergence
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Turbulent Nozzle Computation

Wall Heat Flux
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Conclusions--High Aspect Ratio Study

• High Aspect Ratio Analysis

Stability Theory

Numerical Convergence Studies

• Convergence Control:

Min-CFL Time Step

Max-VNN Viscous Preconditioner

Correct implementation of boundary conditions

• Uniform Convergence Demonstrated for All AR's

Above issues addressed in combination

Efficient convergence for variety of test cases
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Conclusions (Contd.)

• Present results are for two-dimensional central-differenced

ADI scheme

• Explicit Schemes:

m Optimum time step causes poor convergence at high

AR'S

• Upwind Schemes Also Suffer at High AR's

Present improvements may be incorporated

Rich variety of approximate factorization methods

• Three-dimensional computations:

ADI scheme is conditionally stable

,Two kinds of high aspect ratio grids

Algorithmic improvements appear promising
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