542 research outputs found

    Dynamic Interchanging Native States of Lymphotactin Examined by SNAPP-MS

    Get PDF
    The human chemokine lymphotactin (Ltn) is a remarkable protein that interconverts between two unrelated native state structures in the condensed phase. It is possible to shift the equilibrium toward either conformation with selected sequence substitutions. Previous results have shown that a disulfide-stabilized variant preferentially adopts the canonical chemokine fold (Ltn10), while a single amino acid change (W55D) favors the novel Ltn40 dimeric structure. Selective noncovalent adduct protein probing (SNAPP) is a recently developed method for examining solution phase protein structure. Herein, it is demonstrated that SNAPP can easily recognize and distinguish between the Ltn10 and Ltn40 states of lymphotactin in aqueous solution. The effects of organic denaturants, acid, and disulfide bond reduction and blocking were also examined using SNAPP for the CC3, W55D, and wild type proteins. Only disulfide reduction was shown to significantly perturb the protein, and resulted in considerably decreased adduct formation consistent with loss of tertiary/secondary structure. Cold denaturation experiments demonstrated that wild-type Ltn is the most temperature sensitive of the three proteins. Examination of the higher charge states in all experiments, which are presumed to represent transition state structures between Ltn-10 and Ltn-40, reveals increased 18C6 attachment relative to the more folded structures. This observation is consistent with increased competitive intramolecular hydrogen bonding, which may guide the transition. Experiments examining the gas phase structures revealed that all three proteins can be structurally distinguished in the gas phase. In addition, the gas phase experiments enabled identification of preferred adduct binding sites

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Production and characterization of carbamazepine nanocrystals by electrospraying for continuous pharmaceutical manufacturing

    Get PDF
    In this paper, an electrospray technique followed by annealing at high temperatures was developed to produce nanocrystals of carbamazepine (CBZ), a poorly water-soluble drug, for continuous pharmaceutical manufacturing process. Electrospraying solutions of CBZ in methanol obeys the expected scaling law of current, which is I ∼ Q[superscript 1/2] (I, electrical current; Q, flow rate), for liquids with sufficiently high conductivity and viscosity. Lower flow rates during electrospraying were preferred to produce smaller diameters of monodisperse, dense CBZ nanoparticles. CBZ nanoparticles were predominantly amorphous immediately after electrospraying. Crystallization of CBZ nanoparticles was accelerated by annealing at high temperatures. CBZ nanocrystals with the most stable polymorph, form III, were obtained by annealing at 90°C, which is above the transition temperature, 78°C, for the enantiotropic CBZ form III and form I. The solubility and dissolution rates of CBZ nanocrystals increased significantly as compared with those of CBZ bulk particles. Therefore, electrospray technology has the potential to produce pharmaceutical dosage forms with enhanced bioavailability and can readily be integrated in a continuous pharmaceutical manufacturing process.Novartis-MIT Center for Continuous Manufacturin

    Histone H3 globular domain acetylation identifies a new class of enhancers

    Get PDF
    Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes. These modifications include acetylation of histone H3 at lysine 27 (H3K27ac), which blocks Polycomb-mediated trimethylation of H3K27 (H3K27me3). H3K27ac is also widely used to identify active enhancers, and the assumption has been that profiling H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of histone H3 (lysine 64 (H3K64ac) and lysine 122 (H3K122ac)) marks active gene promoters and also a subset of active enhancers. Moreover, we find a new class of active functional enhancers that is marked by H3K122ac but lacks H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than has previously been considered

    Applications of CRISPR–Cas systems in neuroscience

    Get PDF
    Genome-editing tools, and in particular those based on CRISPR-Cas (clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein) systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in almost any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal models and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03

    Two different charge-separation pathways in photosystem II

    Get PDF
    Charge separation is an essential step in the conversion of solar energy into chemical energy in photosynthesis. To investigate this process, we performed transient absorption experiments at 77 K with various excitation conditions on the isolated Photosystem II reaction center preparations from spinach. The results have been analyzed by global and target analysis and demonstrate that at least two different excited states, (Ch

    CRISPR-based strategies in infectious disease diagnosis and therapy

    Get PDF
    CRISPR gene-editing technology has the potential to transform the diagnosis and treatment of infectious diseases, but most clinicians are unaware of its broad applicability. Derived from an ancient microbial defence system, these so-called "molecular scissors" enable precise gene editing with a low error rate. However, CRISPR systems can also be targeted against pathogenic DNA or RNA sequences. This potential is being combined with innovative delivery systems to develop new therapeutic approaches to infectious diseases.info:eu-repo/semantics/publishedVersio
    corecore