666 research outputs found

    Two-in-one aortic valve sizing and valvuloplasty conductance balloon catheter

    Get PDF
    BACKGROUND: Inaccurate aortic valve sizing and selection is linked to paravalvular leakage in transcatheter aortic valve replacement (TAVR). Here, a novel sizing valvuloplasty conductance balloon (SVCB) catheter is shown to be accurate, reproducible, unbiased, and provides real-time tool for aortic valve sizing that fits within the standard valvuloplasty procedure. METHODS AND RESULTS: The SVCB catheter is a valvuloplasty device that uses real-time electrical conductance measurements based on Ohm's Law to size the balloon opposed against the aortic valve at any given inflation pressure. Accuracy and repeatability of the SVCB catheter was performed on the bench in phantoms of known dimension and ex vivo in three domestic swine aortic annuli with comparison to computed tomography (CT) and dilator measurements. Procedural workflow and safety was demonstrated in vivo in three additional domestic swine. SVCB catheter measurements had negligible bias or error for bench accuracy considered as the gold standard (Bias: -0.11 ± 0.26 mm; Error: 1.2%), but greater disagreement in ex vivo versus dilators (Bias: -0.3 ± 1.1 mm; Error: 4.5%), and ex vivo versus CT (Bias: -1.0 ± 1.6 mm; Error: 8.7%). The dilator versus CT accuracy showed similar agreement (Bias: -0.9 ± 1.5 mm; Error: 7.3%). Repeatability was excellent on the bench (Bias: 0.02 ± 0.12 mm; Error: 0.5%) and ex vivo (Bias: -0.4 ± 0.9 mm; Error: 4.6%). In animal studies, the device fit well within the procedural workflow with no adverse events or complications. CONCLUSIONS: Due to the clinical relevance of this accurate, repeatable, unbiased, and real-time sizing measurement, the SVCB catheter may provide a useful tool prior to TAVR. These findings merit a future human study

    Evaluation of Stent and Baffle Deformation in Hybrid Comprehensive Stage II Procedure

    Get PDF
    Introduction: Hypoplastic Left Heart Syndrome (HLHS) is a Congenital Heart Disease (CHD) that leads to a single ventricle circulation (SV). The existing three-stage palliative operation leads to 50% survival rates. To reduce the morbidity and mortality rate associated with the procedure, an alternative technique called Hybrid Comprehensive Stage II (HCSII) featuring the inclusion of a stent and baffle in the left and right pulmonary arteries shown is proposed. The included stent included has the potential to become fractured as a result of oscillatory asymmetric external loads. Materials and Methods: A dynamically-scaled mock flow loop (MFL) study of HCSII shows the effects of fluid pressure on the stent and baffle to infer long term complications validated with numerical simulations. The MFL includes a patient-specific 3D printed model of the reconstructed anatomy, incorporating an intra-pulmonary baffle graft and a stent. Through the inclusion of the digital video otoscope DE500, videos of the stent and baffle are captured and post-processed to determine baffle displacement during the systolic and diastolic phases. Stent deformation is quantified using Scanning Electron Microscope (SEM).Experimental results are cross-validated, using finite element analysis done in Abaqus. Results and Discussion: The displacement of the baffle is tracked in three different locations throughout the cycles. Between peak systole to peak diastole, the computed baffle displacement for each tracked location, based on the processed image data, is 38, 4 and 6 pixels respectively. Conclusions: For 10 cycles, the stent and the baffle deformations are small. Results indicate the left and right pulmonary flow remain unobstructed despite cyclic deformation of the baffle, hence the likelihood of patient death due to total pulmonary obstruction following stent collapse is low

    Geometry of River Networks II: Distributions of Component Size and Number

    Get PDF
    The structure of a river network may be seen as a discrete set of nested sub-networks built out of individual stream segments. These network components are assigned an integral stream order via a hierarchical and discrete ordering method. Exponential relationships, known as Horton's laws, between stream order and ensemble-averaged quantities pertaining to network components are observed. We extend these observations to incorporate fluctuations and all higher moments by developing functional relationships between distributions. The relationships determined are drawn from a combination of theoretical analysis, analysis of real river networks including the Mississippi, Amazon and Nile, and numerical simulations on a model of directed, random networks. Underlying distributions of stream segment lengths are identified as exponential. Combinations of these distributions form single-humped distributions with exponential tails, the sums of which are in turn shown to give power law distributions of stream lengths. Distributions of basin area and stream segment frequency are also addressed. The calculations identify a single length-scale as a measure of size fluctuations in network components. This article is the second in a series of three addressing the geometry of river networks.Comment: 16 pages, 13 figures, 4 tables, Revtex4, submitted to PR

    Middle to Late Pleistocene stability of the central East Antarctic Ice Sheet at the head of Law Glacier

    Get PDF
    Past behavior of outlet glaciers draining the East Antarctic Ice Sheet (EAIS) remains unresolved prior to Marine Isotope Stage 2 (MIS2). Study of blue ice moraines provides a relatively untapped approach to understand former EAIS activity. We focus on a blue ice moraine near Mount Achernar in the central Transantarctic Mountains, at the edge of the polar plateau. The well-preserved moraine consists of quasi-continuous or hummocky sediment ridges that form on top of upward-flowing, sublimating ice along the margin of Law Glacier. 10Be, 26Al, and 3He cosmogenic nuclide ages on boulders from the ridges are coherent and in general are progressively older with distance from the relatively clean ice of the Law Glacier margin. Moraines closest to the Law Glacier margin postdate MIS2; farther away, they date to the last glacial cycle, and with more distance they are hundreds of thousands of years old. We conclude that cosmogenic dating of some blue ice moraines can provide age limits for changes at the heads of outlet glaciers that drain the central East Antarctic Ice Sheet, including prior to MIS2. Furthermore, the geomorphological, cosmogenic nuclide, and sedimentological evidence imply that the East Antarctic polar plateau adjacent to the central Transantarctic Mountains has been relatively stable for at least 200 k.y

    Vitamin B12, folate, and homocysteine in metabolic syndrome: a systematic review and meta-analysis

    Get PDF
    Background & aims: Metabolic syndrome (MetS) is associated with life-threatening conditions. Several studies have reported an association of vitamin B12, folic acid, or homocysteine (Hcy) levels with MetS. This systematic review and meta-analysis assessed the association of vitamin B12, folic acid, and Hcy levels with MetS. Methods: PubMed, Scopus, Embase, Ovid/Medline, and Web of Science were searched up to February 13, 2023. Cross-sectional, case-control, or cohort studies were included. A random-effects model was performed using the DerSimonian and Laird method to estimate the between-study variance. Effect measures were expressed as odds ratios (OR) with their corresponding 95% confidence intervals (95% CI). Between-study heterogeneity was evaluated using Cochran’s Q test and the I2 statistic. Results: Sixty-six articles (n = 87,988 patients) were included. Higher vitamin B12 levels were inversely associated with MetS (OR = 0.87; 95% CI: 0.81–0.93; p < 0.01; I2 = 90%). Higher Hcy levels were associated with MetS (OR = 1.19; 95% CI: 1.14–1.24; p < 0.01; I2 = 90%). Folate levels were not associated with MetS (OR = 0.83; 95% CI: 0.66–1.03; p = 0.09; I2 = 90%). Conclusion: Higher vitamin B12 levels were inversely associated with MetS, whereas higher Hcy levels were associated with MetS. Studies assessing the pathways underlying this association are requiredRevisión por pare

    Comparison of four mathematical models to analyze indicator-dilution curves in the coronary circulation

    Get PDF
    While several models have proven to result in accurate estimations when measuring cardiac output using indicator dilution, the mono-exponential model has primarily been chosen for deriving coronary blood/plasma volume. In this study, we compared four models to derive coronary plasma volume using indicator dilution; the mono-exponential, power-law, gamma-variate, and local density random walk (LDRW) model. In anesthetized goats (N = 14), we determined the distribution volume of high molecular weight (2,000 kDa) dextrans. A bolus injection (1.0 ml, 0.65 mg/ml) was given intracoronary and coronary venous blood samples were taken every 0.5–1.0 s; outflow curves were analyzed using the four aforementioned models. Measurements were done at baseline and during adenosine infusion. Absolute coronary plasma volume estimates varied by ~25% between models, while the relative volume increase during adenosine infusion was similar for all models. The gamma-variate, LDRW, and mono-exponential model resulted in volumes corresponding with literature, whereas the power-model seemed to overestimate the coronary plasma volume. The gamma-variate and LDRW model appear to be suitable alternative models to the mono-exponential model to analyze coronary indicator-dilution curves, particularly since these models are minimally influenced by outliers and do not depend on data of the descending slope of the curve only

    Antimicrobial Photodynamic Therapy of the Respiratory Tract: From the Proof of Principles to Clinical Application

    Get PDF
    Antimicrobial resistance (AMR) and its relevant health consequences have been explicitly framed as a shared global problem and are estimated to be one of the largest causes of death worldwide by 2050. Antimicrobial photodynamic therapy (aPDT) proposes an alternative treatment for localized infections in response to AMR’s ever-growing problem. This technique combines molecular oxygen, a non-toxic photoactivatable photosensitizer (PS), and light of appropriate wavelength, leading to the formation of cytotoxic reactive oxygen species. Besides the ability to inactivate resistant pathogens via a non-selective approach (multiple targets), a relevant advantage of aPDT resides in the fact that no evidence of microorganism resistance has ever been reported to it. In this chapter, we address some efforts to use this technology to kill bacteria in the respiratory tract, from in vitro to clinical applications. We put forward three focuses: pharyngotonsillitis, pneumonia, and preventing secondary infections during the use of a photosensitizer-functionalized endotracheal tube. The results here presented offer a foundation for what may become a much larger clinical approach to treat respiratory tract infections
    corecore