
Contributing features-based schemes for software defect

prediction

Aftab Ali1, Mamun Abu-Tair1, Joost Noppen2, Sally McClean1, Zhiwei Lin1, Ian

McChesney1

1School of computing, Ulster University, United Kingdom, BT37 0QB
{a.ali, m.abu-tair, si.mcclean, z.lin, ir.mcchesney}@ulster.ac.uk

2Applied Research, BT, Ipswich, United Kingdom
johannes.noppen@bt.com

Abstract. Automated defect prediction of large and complex software systems
is a challenging task. However, by utilising correlated quality metrics, a defect
prediction model can be devised to automatically predict the defects in a
software system. The robustness and accuracy of a prediction model is highly
dependent on the selection of contributing and non-contributing features.
Hence, in this regard, the contribution of this paper is twofold, first it separates
those features which are contributing towards the development of a defect in a
software component from those which are non-contributing features. Secondly,
a logistic regression and Ensemble Bagged Trees-based prediction model are
applied on the contributing features for accurately predicting a defect in a
software component. The proposed models are compared with the most recent
scheme in the literature in terms of accuracy and area under the curve (AUC). It
is evident from the results and analysis that the performance of the proposed
prediction models outperforms the schemes in the literature.

1 Introduction

According to a study at Cambridge University, the cost of software defects has

increased to $312 billion per annum globally [1]. The reason behind the cost

increase is that developers spent most of their time on finding and fixing

defects. The developer’s ultimate goal is to release defect free software to the

end user. Unfortunately, software defects are inevitable; for example the US

Department of Defence is spending over four billion dollars for software

failures per year [2].

Techniques of software testing are mostly used to reduce defects and ensure

high quality systems [3, 4] [5]. However, such testing requires some tedious

and exhaustive test cases to be executed, and this makes the process quite

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/443940739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

expensive, especially since the defect removal effectiveness of traditional

testing activities can be very low [6]. According to NIST [7] and [8], finding

defects early in the development process greatly lowers the average cost of

defects. Moreover, inadequate software testing is causing $3.3 billion to U.S.

software developers and users in the financial services sector. According to a

study software defects cost U.S. industry $60 billion a year [9]. This supports

our case that accurate and automatic software defect prediction should be an

important part of the software development process.

In [10], the authors used an approach similar to our work for finding

contributing features for defect prediction using logistic regression and

considering object-oriented metrics. The authors performed experiments on

the open source web and e-mail suite Mozilla version 1.7. The authors

examined a total of eight performance metrics (i.e. LCOM (Lack of Cohesion

on Methods), DIT (Depth of Inheritance Tree), RFC (Response For a Class),

WMC (Weighted Methods per Class), NOC (Number Of Children), CBO

(Coupling Between Object classes), LCOMN (Lack of Cohesion on Methods

allowing Negative value), and LOC (Lines Of Code)), where only one metric is

found to be non-contributing. In another paper, Malhotra [11] reviewed such

approaches and found that logistic regression performed poorly, in terms of

prediction, when compared with machine learning approaches. However,

logistic regression provides good explainability by identifying which features

are important in predicting bugs and quantifying this.

Our current approach therefore combines this explanatory capability of

logistic regression with the diversity provided by a tree-based approach to

improve prediction performance. In this paper, we propose contributing

features-based logistic regression (CFLR) and Ensemble Bagged Trees-based

(EBT) models to predict software defects. The proposed approaches first find

those attributes (features) which are contributing or significant in terms of

defect prediction by using logistic regression. Once those features are

identified in the next step, CFLR and EBT prediction models are applied to the

selected attributes to predict those instances which contains defects. The

proposed schemes have a number of differences from [10]. The current

approach examines eight datasets from different projects with different

features for defect prediction. Once the most appropriate features are

selected by using the CFLR scheme, then these features are passed on to the

EBT algorithm for defect prediction and analysis

The rest of the paper is organised as follows: section 2 presents defect

prediction related work while section 3 elaborates the proposed contributing

features-based logistic regression scheme. Experimental setup, results and

discussions are covered in section 4.

2 Related work

Many machine learning algorithms have been used in the literature to solve

the software defect prediction problem. A systematic review of Machine

Learning based schemes for software defect predictions is presented in [11].

A random forest-based defect prediction scheme is presented in [12], where

the authors compare different schemes in terms of accuracy. An artificial

immune system is used in [13], to predict software defects in five NASA defect

prediction datasets.

Osman et al [14] studied the impact of feature selection on predicting bugs in

software systems. More specifically, they considered the impact of two

different feature selection methods: correlation-based feature selection (CFS)

and wrapper feature selection methods. The paper considers five different

bug prediction models: Linear Regression, Random Forest, K-Nearest

Neighbour, Multilayer Perceptron, and Support Vector Machine. The results

show that by using a proper feature selection method, the accuracy of the bug

prediction models could be increased by 33%.

In [15], the authors proposed semi-supervised deep fuzzy C-mean (DFCM)

clustering for software fault prediction. The proposed solution is compared

with four different bug prediction models including Class Mass Normalization

(CMN) methods, Low-Density Separation (LDS), Support Vector Machine

(SVM) and Expectation-Maximization (EM-SEM). The paper shows that the

proposed method outperforms the four selected bug prediction models in

term of probability of detection using both AUC and F-Measures.

Arasteh [16] proposed a fault prediction method based on combining Neural

Network and the Naïve Bayes algorithms. The author compares the proposed

approach with three different bug prediction models including Support Vector

Machine (SVM) , Artificial Neural Network (ANN) and Naïve Bayes.

In this paper we proposed a logistic regression-based contributing feature

selection process using P-values. While utilising the advantage of logistic

regression simplicity and expandability, it is also used for prediction of bugs.

Moreover, to add some more diversity, the ensemble bagged trees are used

alongside the logistic regression contributing feature selection process.

3 Contributing features-based Logistic Regression

Pre-processing of data to extract useful information (also referred as feature

extraction) is one of the most crucial steps in classification and prediction tasks

[17]. The accuracy of classification and prediction is strongly dependent on

the extraction of relevant features from the raw data [18]. For the feature se-

lection process we use logistic regression as given in the following equation.

 log(
𝜋

1−𝜋
) = 𝑎 + 𝑏1𝑥1 +⋯+ 𝑏𝑛𝑥𝑛

Where
𝜋

1−𝜋
 is the log odds; a, b1, … bn are the constants which we estimate

(learn) from the repository data; and x1, … xn are the features which we extract

from the repository data e.g. loc, cyclomatic complexity etc.

Logistic regression is used for predictive analysis of data to identify the rela-

tionship between a dependent binary variable and one or more independent

variables by estimating the probabilities using a logistic function [19]. The rea-

son for choosing logistic regression is that it is quite extensible and explainable

[20, 21], and it is fairly simple in terms of implementation. In logistic regression

for every feature the P-value is calculated, and the features are then ranked

based on the P-value. A P-value less than 0.05 indicates that a particular fea-

ture is significant. The greater the P-value the more the feature’s significance

decreases, while the lower the P-value the more its significance increases.

3.1 A case study of contributing feature selection

In our experiments, we used eight different datasets [22] for results and anal-
ysis. However, as a case study, only one dataset (i.e. CM1) is selected to

explain and dry run the feature selection process. Below the process of con-
tributing and non-contributing feature selection is explained with reference to
the CM1 dataset.

Table 1. Description of data attributes for CM1

S.No Attribute Description S.No Attribute Description

1. loc line count of code 2. v(g) cyclomatic complexity

3. ev(g) essential complexity 4. iv(g) design complexity

5. n Halstead total operators

+ operands

6. v Halstead "volume"

7. I numeric % Halstead

"program length"

8.
d

Numeric % Halstead

"difficulty"

9. I Halstead "intelligence" 10. e Halstead "effort"

11. b Halstead 12. t Halstead's time estimator

13.
lOCode Halstead's line count

14. lOCommen

t

Halstead's count of lines of

comments

15.
lOBlank

Halstead's count of blank

lines

16. locCodeAn

dComment

17 uniq_Op unique operators 18. uniq_Opnd unique operands

19. total_Op total operators 20. total_Opnd total operands

21.
branchCou

nt
% of the flow graph

22.

defects

(false, true) module

has/has not one or more

reported defects

The dataset (CM1) used in the case study is a NASA spacecraft instrument writ-

ten in C language. The dataset consists of a total of 498 instances, where 49

records are for the modules which contains bugs, while the rest are normal

records without bugs. The data is extracted by using McCabe [23] and Halstead

[24] metric extractors from the source code. A short description of the fea-

tures in the dataset is given in Table 1. These features were defined to charac-

terize code features that are associated with software quality. The McCabe

and Halstead measures are calculated based on modules (functions), where a

module is the smallest unit of functionality.

Similarly, for contributing feature selection, we applied a 0.08 threshold to

find contributing features in the data. Contributing features are those fea-

tures, which have comparatively high potential to participate in the prediction

process. Table 2 shows the selected contributing features along with the cor-

responding P-value. In the original dataset we have 22 features as presented

in Table 1, while after selecting the contributing features we have only 7 fea-

tures as presented in Table 2.

Table 2. Selected Features by applying the threshold

Attribute P-Value

v(g) 0.0784

iv(g) 0.0334

total_Op 0.0189

uniq_Opnd 0.0080

i 0.0033

uniq_Op 0.0016

lOComment 0.0001

4 The Prediction Models

Once the contributing features are selected (using LR), then first (step 1) a lo-

gistic regression-based prediction model is applied to predict buggy and non-

buggy modules in the input dataset. A simple diagrammatic representation of

the proposed contributing features-based logistic regression (CFLR) model is

presented in Figure 1, where X1 … Xn are the input attributes while W1 … Wn

are the corresponding weights for each attribute.

Fig. 1. Logistic Regression-based classifier

By using a tree-based approach, Step 2, we can incorporate diversity into the

logistic regression parameterisation, thus allowing us to recognise and model

different types of bugs with potentially different significant features and

models. Ensemble Bagged Trees-based (EBT) scheme is applied on the

selected contributing features (i.e. the features are first selected by using

logistic regression and then the EBT scheme is applied on those features. The

EBT model is a combination of several decision tree classifiers to produce

better predictive performance than a single decision tree classifier. The basic

principle is to create several subsets from training data chosen randomly with

replacement, where, each collection of subset data is used to train the

corresponding decision trees and end up with an ensemble of different

models. The average of all the predictions from different trees is used resulting

in a more robust model compared to a single decision tree.

In Figure 2, a generic EBT model is given, where the training data is divided in

to multiple subsets (i.e. Data1 … DataM), and the leaners (i.e. M different trees)

are trained with the different subtests of the data.

Fig. 2. A generic EBT Model

5 Experiments and Analysis

The performance of logistic regression and EBT models are evaluated using

10-fold cross validation to evaluate the predictive model and partition the

original dataset into a training set to train the model and a testing set to

evaluate the model. In 10-fold cross-validation, the data is divided into 10

equally sized segments, called folds, where one-fold is kept for validation,

while the other 9 folds are utilized for training the model. The trained model

is then applied to predict the target variable in the testing data. This process

is repeated 10 times, with the performance of each model in predicting the

set being hold. The performance is measured by calculating metrics such as

accuracy, receiver operating characteristic (ROC), and area under curve (AUC).

The advantage of this approach is that the input dataset is used for both

training and testing, and each observation is used for testing exactly once.

5.1 Results and Discussions

The ROC is a measure of predictor performance. The concern here is the area

under the ROC curve which is AUC. In our experiments we achieved

significantly higher values of accuracy and AUC compared to previous work,

which indicates that the predictor does a good job in discriminating between

the modules containing bugs and the ones without a bug which comprise our

target variable.

Table 3. Accuracy and AUC comparison

Moreover, we performed the experiments on the original dataset (i.e.

containing all attributes), as well as on the selected contributing features

dataset (i.e. containing only reduced set of attributes). We found that

generally the selected contributing feature analysis performed better in terms

of accuracy and AUC as presented in Table 3. However, in many cases the

accuracy and AUC are not improved significantly, but achieving slightly better

accuracy and AUC with a reduced number of attributes is a good performance

indication.

5.2 Comparative analysis

The proposed contributing features-based logistic regression (CFLR) and

Ensemble Bagged Trees-based (EBT) schemes are compared with Huda et al

Before Feature Selection After Feature Selection

Dataset No. of

Attributes

Accu-

racy (%)

AUC

(%)

No. of At-

tributes

Accuracy

(%)

AUC

(%)

CM1 22 86.9 57 07 90.4 80

JM1 22 81.4 71 17 82.04 71.4

AR1 30 86.7 51.2 14 87.6 67.3

KC1 22 85.6 79.5 14 86.5 80.4

KC2 22 83.12 82.2 06 85.5 83.3

PC1 22 92.43 80.9 07 93.5 81.9

PC3 38 89.6 82 12 89.6 80

PC4 38 91.56 91.6 10 91.69 92.1

[3] and Arar et al [4] in terms of accuracy and AUC as can be seen in Table 4.

In [3] the authors present SVM and ANN filters and wrappers for significant

attribute selection to predict software defects. Similarly, the scheme in [4]

uses ANN and Artificial Bee Colony (ABC) algorithms with a cost-sensitive

function to deal with the imbalanced data for defect prediction.

Table 4 Comparative analysis

The two important parameters True Positives (TP) and False Positive (FP)

should be considered for a cost-effective bug prediction process [25]. Here

FP represent an instance that does not contains any bug but has been

identified as a bug by the predictor, whereas TP shows the total number of

accurately classified instances. Now, consider the results in Table 4, Logistic

Regression has very high AUC results when compared to the schemes in [3]

and [4]. This clearly demonstrates that the proposed solution has precisely

predicted the bugs in all eight datasets when compared to the schemes in [3]

and [4]. This can be further elaborated as, for example, where a bug affects

only one in a thousand instances, a completely poor prediction model will

always report “negative” (i.e. will not be able to predict that bug) but will still

be 99.9% accurate. Unlike accuracy, AUC is insensitive to class imbalance; a

poor prediction model would have an AUC of 0.5, which is like not having a

prediction at all.

 Logistic Regression

(selected features)

Ensemble Bagged

Trees

Huda et al scheme

[3]

Arar et al Scheme

[4]

Da-

taset

Accu-

racy (%)

AUC

(%)

Accu-

racy (%)

AUC

(%)

Ac-

curacy

(%)

AUC

(%)

Accu-

racy (%)

AUC

(%)

CM1 90.4 80 90.8 73 82.94 56.8 68 77

JM1 82.04 71.4 82.3 73 81.23 70.1 61 71

AR1 87.6 69.0 91 79 55.9 52.7 NA NA

KC1 86.5 81 87.3 82 86.1 69.1 69 80

KC2 85.5 84 79 84 84.7 68.8 79 85

PC1 93.5 82 94 81 93.99 68.1 65 82

PC3 89.6 80 90.4 80 88.05 68.8 NA NA

PC4 91.69 92.1 91.8 94 91.05 64.2 NA NA

Fig. 3. ROC and AUC for (a) CM1, (b) JM1, (c) AR1, (d) KC1, (e) KC2, (f) PC1, (g) PC3, and (h) PC4
datasets using CFLR scheme

Here, the CFLR and EBT schemes perform better for most of the datasets,

while they perform equally well in few cases. In the case of the CM1 dataset,

it is evident that the CFLR and EBT approaches achieve 90.4% and 90.8%

accuracy while maintaining 80% and 73% of AUC, while the schemes in [3] and

[4] have 82.94% and 68% accuracies, and 56.8% and 77% AUC, respectively.

For the AR1 dataset, the CFLR and EBT schemes reache 87.6% and 91%

accuracy, while attaining 69% and 79% AUC, while the scheme in [3] makes

essentially almost no prediction at all with 55.9% accuracy and 52.7% AUC,

barely exceed the 50% default .

Fig. 4. ROC and AUC for (a) CM1, (b) JM1, (c) AR1, (d) KC1, (e) KC2, (f) PC1, (g) PC3, and (h) PC4
datasets using EBT scheme

Similarly, for PC1 dataset, our CFLR and EBT schemes have 93.5% and 94%

accuracy with 82% and 81% AUC, the scheme in [3] has almost equal accuracy

(i.e. 93.99%) but with a lower AUC (i.e. 68.1%); this decreased AUC is a sign of

lower TP. However, the scheme in [4] had 82% AUC but with a lower accuracy

(i.e. 65%), this lower accuracy being due to the lower True Negative (TN).

This lower TP and TN can also be observed in the case of the KC1 and KC2

datasets, where the CFLR scheme accuracies are 86.5% and 85.5% with 81%

and 84% AUC, respectively. Similarly, the EBT scheme achieves 87.3% and 79%

accuracy, and 84% and 82% of AUC. However, in comparison [3] has 86.1%

accuracy but with 69.1% AUC for KC1, and 84.7% accuracy with 68.8% AUC for

KC2. On the other hand, [4] has 69% accuracy with 80% AUC for KC1 and 79%

accuracy and 85% AUC for KC2.

In case of PC3 and PC4 the CFLR scheme has 89.6% and 91.69% accuracy and

80% and 92.1% AUC, respectively. While the EBT scheme has achieved 90.4%

and 91.8% accuracy, and 80% and 94% AUC. However, [3] has almost the same

accuracy (i.e. 88.05% and 91.05%) but with a lower AUC (i.e. 68.8% and

64.2%), which shows that in case of PC3 and PC4 again its performance is

degraded by lower TP. A comparison of the all eight datasets in terms of AUC

can be seen in Figure 3 for CFLR and Figure 4 for EBT.

JM1 is the only case where the accuracy and AUC of the CFLR (i.e. 82.04% and

71.4%) and EBT (i.e. 82.3% and 73%) schemes are almost equal (i.e. 81.23%

and 70.1%) to [3]. But again [4] is suffering with low TN resulting in a very low

accuracy.

6 Conclusion

Due to the rework cost arising from late discovery of defects, there is a need

for more accurate and efficient automated software defect prediction. There

are numerous software quality metrics available in the literature which can

inform defect prediction. These include traditional code metrics such as

McCabe’s complexity measures and Hallstead’s Software Science (as already

noted in the CM1 dataset), object oriented metrics of which the Chidamber

and Kemerer suite [26] is the most widely cited, and process metrics such as

code churn and code deltas . A challenge for the practitioner is to know which

metrics are most valuable in improving the accuracy and efficiency of defect

prediction and how they should be used.

In this paper, we first identify and select the most significant metrics using a

logistic regression-based scheme. Once the most significant metrics are

selected, we then applied the two prediction schemes (i.e. CFLR and EBT) on

the selected metrics for accurate prediction of defects. The performances of

the proposed schemes are compared with other schemes on eight different

datasets, and it is evident from the results that the proposed schemes perform

better in terms of accuracy and AUC.

For the software engineer, the role and application of such defect prediction

is varied. First, since defect prediction will operate in the context of a software

organization with specific process and project challenges to address, then an

overall structured approach to its application is necessary. The Goal-Question-

Metric approach is an established framework for identifying important

dependent and independent product and process features whose values are

necessary to achieve some overall software engineering management goal

[26]. For example, organization goals might require post-hoc project analysis

for the purpose of process improvement, or in-process defect monitoring and

prediction for agile process control. There is also the distinction between

defect data arising from operational use of a system and/or defect data arising

during software verification and validation activities.

The availability of independent variables in a given project will depend on

factors such as the integrated development environment in use (e.g. Eclipse,

Microsoft Visual Studio), the availability of code analyzers for the

programming languages used, the capability of tools used for collection and

export of project issues (e.g. Jira, Bugzilla) and the process data available

through the project’s code repository and version history.

In this context, the selection of a data mining approach will likely be iterative.

The conduct of a pilot data collection exercise is a first step, to explore the fit

between (a) best practice in defect prediction, (b) the available data and (c)

the organization’s overall process objectives. It is also the case that defect

prediction modelling would complement rather than replace the quality

assurance expertise within a software team.

ACKNOWLEDGEMENT

This research is supported by the BTIIC (BT Ireland Innovation Centre) project,

funded by BT and Invest Northern Ireland.

References

1. BRADY, F., Cambridge University Study States Software Bugs Cost Economy $312
Billion Per Year. 2013, Cambridge University.

2. Dick, S., et al., Data mining in software metrics databases. Fuzzy Sets and Systems,
2004. 145(1): p. 81-110.

3. Huda, S., et al., A Framework for Software Defect Prediction and Metric Selection.
IEEE Access, 2018. 6: p. 2844-2858.

4. Arar, Ö.F. and K. Ayan, Software defect prediction using cost-sensitive neural
network. Applied Soft Computing, 2015. 33: p. 263-277.

5. Kassab, M., J.F. DeFranco, and P.A. Laplante, Software Testing: The State of the
Practice. IEEE Software, 2017. 34(5): p. 46-52.

6. Ebert, C. and C. Jones, Embedded Software: Facts, Figures, and Future. Computer,
2009. 42(4): p. 42-52.

7. Planning, S., The economic impacts of inadequate infrastructure for software testing.
National Institute of Standards and Technology, 2002.

8. Bedjanian, J.R.E.n.T.L.D.n.R.A.S.C.S.W.n.R.K.M.n.A.L., The Path to Software Cost
Control. Defense Acquisition, Technology and Logistics, 2014: p. 23-27.

9. Tassey, G., The economic impacts of inadequate infrastructure for software testing.
National Institute of Standards and Technology, 2002. Forschungsbericht (Zitiert auf
Seite 2), 1996.

10. Gyimothy, T., R. Ferenc, and I. Siket, Empirical validation of object-oriented metrics
on open source software for fault prediction. IEEE Transactions on Software
Engineering, 2005. 31(10): p. 897-910.

11. Malhotra, R., A systematic review of machine learning techniques for software fault
prediction. Applied Soft Computing, 2015. 27: p. 504-518.

12. Guo, L., et al. Robust prediction of fault-proneness by random forests. in 15th
International Symposium on Software Reliability Engineering. 2004.

13. Catal, C. and B. Diri, Investigating the effect of dataset size, metrics sets, and feature
selection techniques on software fault prediction problem. Information Sciences,
2009. 179(8): p. 1040-1058.

14. Osman, H., M. Ghafari, and O. Nierstrasz. Automatic feature selection by
regularization to improve bug prediction accuracy. in 2017 IEEE Workshop on
Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE). 2017.

15. Arshad, A., et al., Semi-Supervised Deep Fuzzy C-Mean Clustering for Software Fault
Prediction. IEEE Access, 2018. 6: p. 25675-25685.

16. Arasteh, B. Software Fault-Prediction using Combination of Neural Network and
Naive Bayes Algorithm 2018.

17. Pendharkar, P.C., A data envelopment analysis-based approach for data
preprocessing. IEEE Transactions on Knowledge and Data Engineering, 2005. 17(10):
p. 1379-1388.

18. Aparna, U.R. and S. Paul. Feature selection and extraction in data mining. in 2016
Online International Conference on Green Engineering and Technologies (IC-GET).
2016.

19. Le Cessie, S. and J.C. Van Houwelingen, Ridge estimators in logistic regression.
Applied statistics, 1992: p. 191-201.

20. Catal, C., Software fault prediction: A literature review and current trends. Expert
systems with applications, 2011. 38(4): p. 4626-4636.

21. Jinu M Sunil, L.K., N L Bhanu Murthy. Bayesian Logistic Regression for software
defect prediction. 2018.

22. Sayyad Shirabad, J.a.M., T.J., The PROMISE Repository of Software Engineering
Databases. 2005: School of Information Technology and Engineering, University of
Ottawa, Canada.

23. McCabe, T.J., A Complexity Measure. IEEE Transactions on Software Engineering,
1976. SE-2(4): p. 308-320.

24. Halstead, M.H., Elements of Software Science 1977: Elsevier Science Inc. 128.
25. Taylor, P., Autonomic Business Processes. 2015, University of York.
26. Chidamber, S.R. and C.F. Kemerer, A metrics suite for object oriented design. IEEE

Transactions on software engineering, 1994. 20(6): p. 476-493.

