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Abstract. Automated defect prediction of large and complex software systems 
is a challenging task. However, by utilising correlated quality metrics, a defect 
prediction model can be devised to automatically predict the defects in a 
software system. The robustness and accuracy of a prediction model is highly 
dependent on the selection of contributing and non-contributing features. 
Hence, in this regard, the contribution of this paper is twofold, first it separates 
those features which are contributing towards the development of a defect in a 
software component from those which are non-contributing features. Secondly, 
a logistic regression and Ensemble Bagged Trees-based prediction model are 
applied on the contributing features for accurately predicting a defect in a 
software component. The proposed models are compared with the most recent 
scheme in the literature in terms of accuracy and area under the curve (AUC). It 
is evident from the results and analysis that the performance of the proposed 
prediction models outperforms the schemes in the literature. 
 

1 Introduction  

According to a study at Cambridge University, the cost of software defects has 

increased to $312 billion per annum globally [1]. The reason behind the cost 

increase is that developers spent most of their time on finding and fixing 

defects. The developer’s ultimate goal is to release defect free software to the 

end user. Unfortunately, software defects are inevitable; for example the US 

Department of Defence is spending over four billion dollars for software 

failures per year [2]. 

Techniques of software testing are mostly used to reduce defects and ensure 

high quality systems [3, 4] [5]. However, such testing requires some tedious 

and exhaustive test cases to be executed, and this makes the process quite 
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expensive, especially since the defect removal effectiveness of traditional 

testing activities can be very low [6]. According to NIST [7] and [8], finding 

defects early in the development process greatly lowers the average cost of 

defects. Moreover, inadequate software testing is causing $3.3 billion to U.S. 

software developers and users in the financial services sector. According to a 

study software defects cost U.S. industry $60 billion a year [9]. This supports 

our case that accurate and automatic software defect prediction should be an 

important part of the software development process.  

In [10], the authors used an approach similar to our work for finding 

contributing features for defect prediction using logistic regression and 

considering object-oriented metrics. The authors performed experiments on 

the open source web and e-mail suite Mozilla version 1.7. The authors 

examined a total of eight performance metrics (i.e. LCOM (Lack of Cohesion 

on Methods), DIT (Depth of Inheritance Tree), RFC (Response For a Class), 

WMC (Weighted Methods per Class), NOC (Number Of Children), CBO 

(Coupling Between Object classes),  LCOMN (Lack of Cohesion on Methods 

allowing Negative value), and  LOC (Lines Of Code)), where only one metric is 

found to be non-contributing.  In another paper,  Malhotra [11]  reviewed such 

approaches and found that logistic regression performed poorly, in terms of 

prediction, when compared with machine learning approaches. However, 

logistic regression provides good explainability by identifying which features 

are important in predicting bugs and quantifying this.  

Our current approach therefore combines this explanatory capability of 

logistic regression with the diversity provided by a tree-based approach to 

improve prediction performance. In this paper, we propose contributing 

features-based logistic regression (CFLR) and Ensemble Bagged Trees-based 

(EBT) models to predict software defects. The proposed approaches first find 

those attributes (features) which are contributing or significant in terms of 

defect prediction by using logistic regression. Once those features are 

identified in the next step, CFLR and EBT prediction models are applied to the 

selected attributes to predict those instances which contains defects. The 

proposed schemes have a number of differences from [10]. The current 

approach examines eight datasets from different projects with different 

features for defect prediction. Once the most appropriate features are 



selected by using the CFLR scheme, then these features are passed on to the 

EBT algorithm for defect prediction and analysis 

The rest of the paper is organised as follows: section 2 presents defect 

prediction related work while section 3 elaborates the proposed contributing 

features-based logistic regression scheme. Experimental setup, results and 

discussions are covered in section 4. 

2 Related work 

Many machine learning algorithms have been used in the literature to solve 

the software defect prediction problem. A systematic review of Machine 

Learning based schemes for software defect predictions is presented in [11]. 

A random forest-based defect prediction scheme is presented in [12], where 

the authors compare different schemes in terms of accuracy. An artificial 

immune system is used in [13], to predict software defects in five NASA defect 

prediction datasets.  

Osman et al [14] studied the impact of feature selection on predicting bugs in 

software systems. More specifically, they considered the impact of two 

different feature selection methods: correlation-based feature selection (CFS) 

and wrapper feature selection methods. The paper considers five different 

bug prediction models: Linear Regression, Random Forest, K-Nearest 

Neighbour, Multilayer Perceptron, and Support Vector Machine. The results 

show that by using a proper feature selection method, the accuracy of the bug 

prediction models could be increased by 33%.  

In [15], the authors proposed semi-supervised deep fuzzy C-mean (DFCM) 

clustering for software fault prediction. The proposed solution is compared 

with four different bug prediction models including Class Mass Normalization 

(CMN) methods, Low-Density Separation (LDS), Support Vector Machine 

(SVM) and Expectation-Maximization (EM-SEM). The paper shows that the 

proposed method outperforms the four selected bug prediction models in 

term of probability of detection using both AUC and F-Measures.  

Arasteh [16] proposed a fault prediction method based on combining Neural 

Network and the Naïve Bayes algorithms. The author compares the proposed 



approach with three different bug prediction models including Support Vector 

Machine (SVM) , Artificial Neural Network (ANN) and  Naïve Bayes. 

In this paper we proposed a logistic regression-based contributing feature 

selection process using P-values. While utilising the advantage of logistic 

regression simplicity and expandability, it is also used for prediction of bugs. 

Moreover, to add some more diversity, the ensemble bagged trees are used 

alongside the logistic regression contributing feature selection process.  

3 Contributing features-based Logistic Regression  

Pre-processing of data to extract useful information (also referred as feature 

extraction) is one of the most crucial steps in classification and prediction tasks 

[17].   The accuracy of classification and prediction is strongly dependent on 

the extraction of relevant features from the raw data [18]. For the feature se-

lection process we use logistic regression as given in the following equation.  

 log(
𝜋

1−𝜋
) = 𝑎 + 𝑏1𝑥1 +⋯+ 𝑏𝑛𝑥𝑛 

Where 
𝜋

1−𝜋
 is the log odds; a, b1, … bn are the constants which we estimate 

(learn) from the repository data; and x1, … xn are the features which we extract 

from the repository data e.g. loc, cyclomatic complexity etc.  

Logistic regression  is used for predictive analysis of data to identify the rela-

tionship between a dependent binary variable and one or more independent 

variables by estimating the probabilities using a logistic function [19].  The rea-

son for choosing logistic regression is that it is quite extensible and explainable 

[20, 21], and it is fairly simple in terms of implementation. In logistic regression 

for every feature the P-value is calculated, and the features are then ranked 

based on the P-value.  A P-value less than 0.05 indicates that a particular fea-

ture is significant. The greater the P-value the more the feature’s significance 

decreases, while the lower the P-value the more its significance increases.  

3.1 A case study of contributing feature selection 

In our experiments, we used eight different datasets [22] for results and anal-
ysis. However, as a case study, only one dataset (i.e. CM1) is selected to 



explain and dry run the feature selection process. Below the process of con-
tributing and non-contributing feature selection is explained with reference to 
the CM1 dataset. 

Table 1. Description of data attributes for CM1 

S.No Attribute Description S.No Attribute Description 

1. loc line count of code 2. v(g) cyclomatic complexity 

3. ev(g) essential complexity 4. iv(g) design complexity 

5. n Halstead total operators 

+ operands 

6. v Halstead "volume" 

7. I numeric % Halstead 

"program length" 

8. 
d 

Numeric % Halstead 

"difficulty" 

9. I Halstead "intelligence" 10. e               Halstead "effort" 

11. b Halstead 12. t Halstead's time estimator 

13. 
lOCode Halstead's line count 

14. lOCommen

t 

Halstead's count of lines of 

comments 

15. 
lOBlank 

Halstead's count of blank 

lines 

16. locCodeAn

dComment 

 

17 uniq_Op unique operators 18. uniq_Opnd unique operands 

19. total_Op total operators 20. total_Opnd total operands 

21. 
branchCou

nt 
% of the flow graph 

22. 

defects 

(false, true) module 

has/has not one or more 

reported defects 

 

The dataset (CM1) used in the case study is a NASA spacecraft instrument writ-

ten in C language. The dataset consists of a total of 498 instances, where 49 

records are for the modules which contains bugs, while the rest are normal 

records without bugs. The data is extracted by using McCabe [23] and Halstead 

[24] metric extractors from the source code. A short description of the fea-

tures in the dataset is given in Table 1. These features were defined to charac-

terize code features that are associated with software quality. The McCabe 

and Halstead measures are calculated based on modules (functions), where a 

module is the smallest unit of functionality. 

Similarly, for contributing feature selection, we applied a 0.08 threshold to 

find contributing features in the data. Contributing features are those fea-

tures, which have comparatively high potential to participate in the prediction 

process. Table 2 shows the selected contributing features along with the cor-

responding P-value. In the original dataset we have 22 features as presented 

in Table 1, while after selecting the contributing features we have only 7 fea-

tures as presented in Table 2. 



Table 2. Selected Features by applying the threshold 

Attribute P-Value 

v(g) 0.0784 

iv(g) 0.0334 

total_Op 0.0189 

uniq_Opnd 0.0080 

i 0.0033 

uniq_Op 0.0016 

lOComment 0.0001 

4 The Prediction Models 

Once the contributing features are selected (using LR), then first (step 1) a lo-

gistic regression-based prediction model is applied to predict buggy and non-

buggy modules in the input dataset. A simple diagrammatic representation of 

the proposed contributing features-based logistic regression (CFLR) model is 

presented in Figure 1, where X1 … Xn are the input attributes while W1 … Wn 

are the corresponding weights for each attribute.  

 

Fig. 1. Logistic Regression-based classifier 

By using a tree-based approach, Step 2, we can incorporate diversity into the 

logistic regression parameterisation, thus allowing us to recognise and model 

different types of bugs with potentially different significant features and 

models. Ensemble Bagged Trees-based (EBT) scheme is applied on the 

selected contributing features (i.e. the features are first selected by using 

logistic regression and then the EBT scheme is applied on those features. The 

EBT model is a combination of several decision tree classifiers to produce 

better predictive performance than a single decision tree classifier. The basic 

principle is to create several subsets from training data chosen randomly with 



replacement, where, each collection of subset data is used to train the 

corresponding decision trees and end up with an ensemble of different 

models. The average of all the predictions from different trees is used resulting 

in a more robust model compared to a single decision tree. 

In Figure 2, a generic EBT model is given, where the training data is divided in 

to multiple subsets (i.e. Data1 … DataM), and the leaners (i.e. M different trees) 

are trained with the different subtests of the data. 

 

Fig. 2. A generic EBT Model 

5 Experiments and Analysis 

The performance of logistic regression and EBT models are evaluated using 

10-fold cross validation to evaluate the predictive model and partition the 

original dataset into a training set to train the model and a testing set to 

evaluate the model. In 10-fold cross-validation, the data is divided into 10 

equally sized segments, called folds, where one-fold is kept for validation, 

while the other 9 folds are utilized for training the model. The trained model 

is then applied to predict the target variable in the testing data. This process 

is repeated 10 times, with the performance of each model in predicting the 

set being hold. The performance is measured by calculating metrics such as 

accuracy, receiver operating characteristic (ROC), and area under curve (AUC). 



The advantage of this approach is that the input dataset is used for both 

training and testing, and each observation is used for testing exactly once. 

5.1 Results and Discussions 

The ROC is a measure of predictor performance. The concern here is the area 

under the ROC curve which is AUC. In our experiments we achieved 

significantly higher values of accuracy and AUC compared to previous work, 

which indicates that the predictor does a good job in discriminating between 

the modules containing bugs and the ones without a bug which comprise our 

target variable. 

Table 3. Accuracy and AUC comparison 

 

Moreover, we performed the experiments on the original dataset (i.e. 

containing all attributes), as well as on the selected contributing features 

dataset (i.e. containing only reduced set of attributes). We found that 

generally the selected contributing feature analysis performed better in terms 

of accuracy and AUC as presented in Table 3. However, in many cases the 

accuracy and AUC are not improved significantly, but achieving slightly better 

accuracy and AUC with a reduced number of attributes is a good performance 

indication. 

5.2 Comparative analysis  

The proposed contributing features-based logistic regression (CFLR) and 

Ensemble Bagged Trees-based (EBT) schemes are compared with Huda et al 

Before Feature Selection After Feature Selection 

Dataset No. of 

Attributes 

Accu-

racy (%) 

AUC 

(%) 

No. of At-

tributes 

Accuracy 

(%) 

AUC 

(%) 

CM1 22 86.9 57 07 90.4 80 

JM1 22 81.4 71 17 82.04 71.4 

AR1 30 86.7 51.2 14 87.6 67.3 

KC1 22 85.6 79.5 14 86.5 80.4 

KC2 22 83.12 82.2 06 85.5 83.3 

PC1 22 92.43 80.9 07 93.5 81.9 

PC3 38 89.6 82 12 89.6 80 

PC4 38 91.56 91.6 10 91.69 92.1 



[3] and Arar et al [4] in terms of accuracy and AUC as can be seen in Table 4. 

In [3] the authors present SVM and ANN filters and wrappers for significant 

attribute selection to predict software defects. Similarly, the scheme in [4] 

uses ANN and Artificial Bee Colony (ABC) algorithms with a cost-sensitive 

function to deal with the imbalanced data for defect prediction.  

Table 4 Comparative analysis 

 

The two important parameters True Positives (TP) and False Positive (FP)  

should be  considered for a cost-effective bug prediction process [25].  Here 

FP represent an instance that does not contains any bug but has been 

identified as a bug by the predictor, whereas TP shows the total number of 

accurately classified instances. Now, consider the results in Table 4, Logistic 

Regression has very high AUC results when compared to the schemes in [3] 

and [4]. This clearly demonstrates that the proposed solution has precisely 

predicted the bugs in all eight datasets when compared to the schemes in [3] 

and [4].  This can be further elaborated as, for example, where a bug affects 

only one in a thousand instances, a completely poor prediction model will 

always report “negative” (i.e. will not be able to predict that bug) but will still 

be 99.9% accurate. Unlike accuracy, AUC is insensitive to class imbalance; a 

poor prediction model would have an AUC of 0.5, which is like not having a 

prediction at all. 

 

 

 Logistic Regression 

(selected features) 

Ensemble Bagged 

Trees 

Huda et al scheme 

[3] 

Arar et al Scheme 

[4] 

Da-

taset 

Accu-

racy (%) 

AUC 

(%) 

Accu-

racy (%) 

AUC 

(%) 

Ac-

curacy 

(%) 

AUC 

(%) 

Accu-

racy (%) 

AUC 

(%) 

CM1 90.4 80 90.8 73 82.94 56.8 68 77 

JM1 82.04 71.4 82.3 73 81.23 70.1 61 71 

AR1 87.6 69.0 91 79 55.9 52.7 NA NA 

KC1 86.5 81 87.3 82 86.1 69.1 69 80 

KC2 85.5 84 79 84 84.7 68.8 79 85 

PC1 93.5 82 94 81 93.99 68.1 65 82 

PC3 89.6 80 90.4 80 88.05 68.8 NA NA 

PC4 91.69 92.1 91.8 94 91.05 64.2 NA NA 



   

   

 

Fig. 3. ROC and AUC for (a) CM1, (b) JM1, (c) AR1, (d) KC1, (e) KC2, (f) PC1, (g) PC3, and (h) PC4 
datasets using CFLR scheme 

Here, the CFLR and EBT schemes perform better for most of the datasets, 

while they perform equally well in few cases. In the case of the CM1 dataset, 

it is evident that the CFLR and EBT approaches achieve 90.4% and 90.8% 

accuracy while maintaining 80% and 73% of AUC, while the schemes in [3] and 

[4] have 82.94% and 68% accuracies, and 56.8% and 77% AUC, respectively.  

For the AR1 dataset, the CFLR and EBT schemes reache 87.6% and 91% 

accuracy, while attaining 69% and 79% AUC, while the scheme in [3] makes 

essentially almost no prediction at all with 55.9% accuracy and 52.7% AUC, 

barely exceed the 50% default . 



 

   

   

 

 

Fig. 4. ROC and AUC for (a) CM1, (b) JM1, (c) AR1, (d) KC1, (e) KC2, (f) PC1, (g) PC3, and (h) PC4 
datasets using EBT scheme 

Similarly, for PC1 dataset, our CFLR and EBT schemes have 93.5% and 94% 

accuracy with 82%  and 81% AUC, the scheme in [3] has almost equal accuracy 

(i.e. 93.99%) but with a lower AUC (i.e. 68.1%); this decreased AUC is a sign of 

lower TP. However, the scheme in [4] had 82% AUC but with a lower accuracy 

(i.e. 65%), this lower accuracy being due to the lower True Negative (TN).  



This lower TP and TN can also be observed in the case of the KC1 and KC2 

datasets, where the CFLR scheme accuracies are 86.5% and 85.5% with 81% 

and 84% AUC, respectively. Similarly, the EBT scheme achieves 87.3% and 79% 

accuracy, and 84% and 82% of AUC. However, in comparison [3] has 86.1% 

accuracy but with 69.1% AUC for KC1, and 84.7% accuracy with 68.8% AUC for 

KC2. On the other hand, [4] has 69% accuracy with 80% AUC for KC1 and 79% 

accuracy and 85% AUC for KC2. 

In case of PC3 and PC4 the CFLR scheme has 89.6% and 91.69% accuracy and 

80% and 92.1% AUC, respectively. While the EBT scheme has achieved 90.4% 

and 91.8% accuracy, and 80% and 94% AUC. However, [3] has almost the same 

accuracy (i.e. 88.05% and 91.05%) but with a lower AUC (i.e. 68.8% and 

64.2%), which shows that in case of PC3 and PC4 again its performance is 

degraded by lower TP. A comparison of the all eight datasets in terms of AUC 

can be seen in Figure 3 for CFLR and Figure 4 for EBT. 

JM1 is the only case where the accuracy and AUC of  the CFLR (i.e. 82.04% and 

71.4%) and EBT (i.e. 82.3% and 73%) schemes are almost equal (i.e. 81.23% 

and 70.1%) to  [3]. But again [4] is suffering with low TN resulting in a very low 

accuracy. 

6   Conclusion  

Due to the rework cost arising from late discovery of defects, there is a need 

for more accurate and efficient automated software defect prediction. There 

are numerous software quality metrics available in the literature which can 

inform defect prediction. These include traditional code metrics such as 

McCabe’s complexity measures and Hallstead’s Software Science (as already 

noted in the CM1 dataset), object oriented metrics of which the Chidamber 

and Kemerer suite [26] is the most widely cited, and process metrics such as 

code churn and code deltas . A challenge for the practitioner is to know which 

metrics are most valuable in improving the accuracy and efficiency of defect 

prediction and how they should be used. 

In this paper, we first identify and select the most significant metrics using a 

logistic regression-based scheme. Once the most significant metrics are 

selected, we then applied the two prediction schemes (i.e. CFLR and EBT) on 

the selected metrics for accurate prediction of defects. The performances of 



the proposed schemes are compared with other schemes on eight different 

datasets, and it is evident from the results that the proposed schemes perform 

better in terms of accuracy and AUC.  

For the software engineer, the role and application of such defect prediction 

is varied. First, since defect prediction will operate in the context of a software 

organization with specific process and project challenges to address, then an 

overall structured approach to its application is necessary. The Goal-Question-

Metric approach is an established framework for identifying important 

dependent and independent product and process features whose values are 

necessary to achieve some overall software engineering management goal 

[26]. For example, organization goals might require post-hoc project analysis 

for the purpose of process improvement, or in-process defect monitoring and 

prediction for agile process control. There is also the distinction between 

defect data arising from operational use of a system and/or defect data arising 

during software verification and validation activities. 

The availability of independent variables in a given project will depend on 

factors such as the integrated development environment in use (e.g. Eclipse, 

Microsoft Visual Studio), the availability of code analyzers for the 

programming languages used, the capability of tools used for collection and 

export of project issues (e.g. Jira, Bugzilla) and the process data available 

through the project’s code repository and version history.  

In this context, the selection of a data mining approach will likely be iterative. 

The conduct of a pilot data collection exercise is a first step, to explore the fit 

between (a) best practice in defect prediction, (b) the available data and (c) 

the organization’s overall process objectives. It is also the case that defect 

prediction modelling would complement rather than replace the quality 

assurance expertise within a software team.  
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