46 research outputs found
Evolution of spin excitations from bulk to monolayer FeSe
In ultrathin films of FeSe grown on SrTiO (FeSe/STO), the superconducting transition temperature T is increased by almost an order of magnitude, raising questions on the pairing mechanism. As in other superconductors, antiferromagnetic spin fluctuations have been proposed to mediate SC making it essential to study the evolution of the spin dynamics of FeSe from the bulk to the ultrathin limit. Here, we investigate the spin excitations in bulk and monolayer FeSe/STO using resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to its bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems revealing a remarkable reconfiguration of spin excitations in FeSe/STO, essential to understand the role of spin fluctuations in the pairing mechanism
Evolution of spin excitations from bulk to monolayer FeSe
In ultrathin films of FeSe grown on SrTiO3 (FeSe/STO), the superconducting transition temperature Tc is increased by almost an order of magnitude, raising questions on the pairing mechanism. As in other superconductors, antiferromagnetic spin fluctuations have been proposed to mediate SC making it essential to study the evolution of the spin dynamics of FeSe from the bulk to the ultrathin limit. Here, we investigate the spin excitations in bulk and monolayer FeSe/STO using resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to its bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems revealing a remarkable reconfiguration of spin excitations in FeSe/STO, essential to understand the role of spin fluctuations in the pairing mechanism
The Canadian Open Neuroscience Platform—An open science framework for the neuroscience community
ABSTRACT: The Canadian Open Neuroscience Platform (CONP) takes a multifaceted approach to enabling open neuroscience, aiming to make research, data, and tools accessible to everyone, with the ultimate objective of accelerating discovery. Its core infrastructure is the CONP Portal, a repository with a decentralized design, where datasets and analysis tools across disparate platforms can be browsed, searched, accessed, and shared in accordance with FAIR principles. Another key piece of CONP infrastructure is NeuroLibre, a preprint server capable of creating and hosting executable and fully reproducible scientific publications that embed text, figures, and code. As part of its holistic approach, the CONP has also constructed frameworks and guidance for ethics and data governance, provided support and developed resources to help train the next generation of neuroscientists, and has fostered and grown an engaged community through outreach and communications. In this manuscript, we provide a high-level overview of this multipronged platform and its vision of lowering the barriers to the practice of open neuroscience and yielding the associated benefits for both individual researchers and the wider community
Phase diagram of the two-dimensional Hubbard-Holstein model
The electron\u2013electron and electron\u2013phonon interactions play an important role in correlated materials, being key features for spin, charge and pair correlations. Thus, here we investigate their effects in strongly correlated systems by performing unbiased quantum Monte Carlo simulations in the square lattice Hubbard-Holstein model at half-filling. We study the competition and interplay between antiferromagnetism (AFM) and charge-density wave (CDW), establishing its very rich phase diagram. In the region between AFM and CDW phases, we have found an enhancement of superconducting pairing correlations, favouring (nonlocal) s-wave pairs. Our study sheds light over past inconsistencies in the literature, in particular the emergence of CDW in the pure Holstein model case
Centering inclusivity in the design of online conferences: An OHBM-Open Science perspective
As the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.g., caregiving responsibilities. Yet, the mere existence of online conferences is no guarantee that everyone can attend and participate meaningfully. In fact, many elements of an online conference are still significant barriers to truly diverse participation: the tools used can be inaccessible for some individuals; the scheduling choices can favour some geographical locations; the set-up of the conference can provide more visibility to well-established researchers and reduce opportunities for early-career researchers. While acknowledging the benefits of an online setting, especially for individuals who have traditionally been underrepresented or excluded, we recognize that fostering social justice requires inclusivity to actively be centered in every aspect of online conference design. Here, we draw from the literature and from our own experiences to identify practices that purposefully encourage a diverse community to attend, participate in, and lead online conferences. Reflecting on how to design more inclusive online events is especially important as multiple scientific organizations have announced that they will continue offering an online version of their event when in-person conferences can resume
The Past, Present, and Future of the Brain Imaging Data Structure (BIDS)
The Brain Imaging Data Structure (BIDS) is a community-driven standard for
the organization of data and metadata from a growing range of neuroscience
modalities. This paper is meant as a history of how the standard has developed
and grown over time. We outline the principles behind the project, the
mechanisms by which it has been extended, and some of the challenges being
addressed as it evolves. We also discuss the lessons learned through the
project, with the aim of enabling researchers in other domains to learn from
the success of BIDS.Development of the BIDS Standard has been supported by the International Neuroinformatics Coordinating Facility, Laura and John Arnold Foundation, National Institutes of Health (R24MH114705, R24MH117179, R01MH126699, R24MH117295, P41EB019936, ZIAMH002977, R01MH109682, RF1MH126700, R01EB020740), National Science Foundation (OAC-1760950, BCS-1734853, CRCNS-1429999, CRCNS-1912266), Novo Nordisk Fonden (NNF20OC0063277), French National Research Agency (ANR-19-DATA-0023, ANR 19-DATA-0021), Digital Europe TEF-Health (101100700), EU H2020 Virtual Brain Cloud (826421), Human Brain Project (SGA2 785907, SGA3 945539), European Research Council (Consolidator 683049), German Research Foundation (SFB 1436/425899996), SFB 1315/327654276, SFB 936/178316478, SFB-TRR 295/424778381), SPP Computational Connectomics (RI 2073/6-1, RI 2073/10-2, RI 2073/9-1), European Innovation Council PHRASE Horizon (101058240), Berlin Institute of Health & Foundation Charité, Johanna Quandt Excellence Initiative, ERAPerMed Pattern-Cog, and the Virtual Research Environment at the Charité Berlin – a node of EBRAINS Health Data Cloud.N
The past, present, and future of the Brain Imaging Data Structure (BIDS)
The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of
data and metadata from a growing range of neuroscience modalities. This paper is meant as a
history of how the standard has developed and grown over time. We outline the principles
behind the project, the mechanisms by which it has been extended, and some of the challenges
being addressed as it evolves. We also discuss the lessons learned through the project, with the
aim of enabling researchers in other domains to learn from the success of BIDS
Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates
In this study, the impact behavior of laminated glass-epoxy composites at several temperatures (20 °C, -20 °C and -60 °C) was studied experimentally. Impact tests were performed by using Fractovis Plus impact test machine with a constant impactor mass of 5.02 kg. Composite specimens with stacking sequence [0/90/45/-45]S were impacted at varied impact energies ranging from 5 J to 70 J. Variation of the impact characteristics such as maximum contact load, maximum deflection, maximum contact time and absorbed energy versus impact energy are depicted in figures. Results indicated that the ambient temperature highly affects the impact response of composite materials. © 2009 Elsevier Ltd. All rights reserved
An experimental investigation of the impact response of composite laminates
In this study, the impact response of unidirectional glass/epoxy laminates has been investigated by considering energy profile diagrams and associated load-deflection curves. Damage modes and the damage process of laminates under varied impact energies are discussed. Two different stacking sequences, [0/90/0/90]s and [0/90/+45/-45]s, were chosen in tests for comparison. An alternative method, based on variation of the excessive energy (Ee) versus impact energy (Ei), is presented to determine penetration threshold (Pn). The penetration threshold for stacking sequence [0/90/+45/-45]s is found to be smaller than that of [0/90/0/90]s. The primary damage mode was found to be fiber fracture for higher impact energies; whereas, it was indentation resulting in delamination and matrix cracks for smaller impact energies. Contour plots of the overall damage areas are also depicted for several impact energies. © 2008 Elsevier Ltd. All rights reserved.104M426Financial support for this study was provided by The Scientific and Technological Research Council of Turkey (TÜBİTAK), (Project Number: 104M426). Partial financial support by Izoreel firm, in Izmir-Turkey, is also gratefully acknowledged