77 research outputs found

    Quantifying structural damage from self-irradiation in a plutonium superconductor

    Full text link
    The 18.5 K superconductor PuCoGa5 has many unusual properties, including those due to damage induced by self-irradiation. The superconducting transition temperature decreases sharply with time, suggesting a radiation-induced Frenkel defect concentration much larger than predicted by current radiation damage theories. Extended x-ray absorption fine-structure measurements demonstrate that while the local crystal structure in fresh material is well ordered, aged material is disordered much more strongly than expected from simple defects, consistent with strong disorder throughout the damage cascade region. These data highlight the potential impact of local lattice distortions relative to defects on the properties of irradiated materials and underscore the need for more atomic-resolution structural comparisons between radiation damage experiments and theory.Comment: 7 pages, 5 figures, to be published in PR

    Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q\u3csup\u3e2\u3c/sup\u3e = 0.92 and 1.76 GeV\u3csup\u3e2\u3c/sup\u3e

    Get PDF
    Virtual Compton scattering (VCS) on the proton has been studied at the Jefferson Laboratory using the exclusive photon electroproduction reaction ep → epγ. This paper gives a detailed account of the analysis which has led to the determination of the structure functions PLL − PTT/ε and PLT and the electric and magnetic generalized polarizabilities (GPs) αE(Q2)and βM(Q2) at values of the four-momentum transfer squared Q2 = 0.92 and 1.76 GeV2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q2 range and point to their nontrivial behavior

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region Up to the Deep Inelastic Region at Backward Angles

    Get PDF
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e, e′p)γ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at fixed Q2=1 GeV2 and for the Q2 dependence at fixed W near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2 dependence is smooth. The measured ratio of H(e, e′p)γ to H(e, e′p)π0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to real Compton scattering (RCS) at high energy and large angles, our VCS data at the highest W (1.8−1.9 GeV) show a striking Q2 independence, which may suggest a transition to a perturbative scattering mechanism at the quark level

    Measurement of the Generalized Forward Spin Polarizabilities of the Neutron

    Full text link
    The generalized forward spin polarizabilities γ0\gamma_0 and δLT\delta_{LT} of the neutron have been extracted for the first time in a Q2Q^2 range from 0.1 to 0.9 GeV2^2. Since γ0\gamma_0 is sensitive to nucleon resonances and δLT\delta_{LT} is insensitive to the Δ\Delta resonance, it is expected that the pair of forward spin polarizabilities should provide benchmark tests of the current understanding of the chiral dynamics of QCD. The new results on δLT\delta_{LT} show significant disagreement with Chiral Perturbation Theory calculations, while the data for γ0\gamma_0 at low Q2Q^2 are in good agreement with a next-to-lead order Relativistic Baryon Chiral Perturbation theory calculation. The data show good agreement with the phenomenological MAID model.Comment: 5 pages, 2 figures, corrected typo in author name, published in PR

    Second-Order Formalism for 3D Spin-3 Gravity

    Full text link
    A second-order formalism for the theory of 3D spin-3 gravity is considered. Such a formalism is obtained by solving the torsion-free condition for the spin connection \omega^a_{\mu}, and substituting the result into the action integral. In the first-order formalism of the spin-3 gravity defined in terms of SL(3,R) X SL(3,R) Chern-Simons (CS) theory, however, the generalized torsion-free condition cannot be easily solved for the spin connection, because the vielbein e^a_{\mu} itself is not invertible. To circumvent this problem, extra vielbein-like fields e^a_{\mu\nu} are introduced as a functional of e^a_{\mu}. New set of affine-like connections \Gamma_{\mu M}^N are defined in terms of the metric-like fields, and a generalization of the Riemann curvature tensor is also presented. In terms of this generalized Riemann tensor the action integral in the second-order formalism is expressed. The transformation rules of the metric and the spin-3 gauge field under the generalized diffeomorphims are obtained explicitly. As in Einstein gravity, the new affine-like connections are related to the spin connection by a certain gauge transformation, and a gravitational CS term expressed in terms of the new connections is also presented.Comment: 40 pages, no figures. v2:references added, coefficients of eqs in apppendix D corrected, minor typos also corrected, v3:Version accepted for publication in Classical and Quantum Gravit

    The Q^2 evolution of the generalized Gerasimov-Drell-Hearn integral for the neutron using a He-3 target

    Full text link
    We present data on the inclusive scattering of polarized electrons from a polarized He-3 target at energies from 0.862 to 5.06 GeV, obtained at a scattering angle of 15.5 degrees. Our data include measurements from the quasielastic peak, through the resonance region, to the beginning of the deep inelastic regime, and were used to determine the spin difference in the virtual photoabsorption cross section. We extract the extended Gerasimov-Drell-Hearn integral for the neutron in the range of 4-momentum transfer squared Q^2 of 0.1-0.9 GeV.Comment: 14 pages of text when TeXed in preprint format with figures embedded. RevTeX format. Three eps figure

    Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q^2=0.92 and 1.76 GeV^2

    Get PDF
    Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76 GeV^2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q^2-range, and point to their non-trivial behavior.Comment: version 2: modified according to PRC Editor's and Referee's recommendations. Archival paper for the E93-050 experiment at JLab Hall A. 28 pages, 23 figures, 5 cross-section tables. To be submitted to Phys.Rev.

    Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function A(Q^2) at Jefferson Laboratory

    Full text link
    The deuteron elastic structure function A(Q^2) has been extracted in the Q^2 range 0.7 to 6.0 (GeV/c)^2 from cross section measurements of elastic electron-deuteron scattering in coincidence using the Hall A Facility of Jefferson Laboratory. The data are compared to theoretical models based on the impulse approximation with inclusion of meson-exchange currents, and to predictions of quark dimensional scaling and perturbative quantum chromodynamicsComment: Submitted to Physical Review Letter

    Q^2 Evolution of the Neutron Spin Structure Moments using a He-3 Target

    Full text link
    We have measured the spin structure functions g1g_1 and g2g_2 of 3^3He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.07 GeV off a polarized 3^3He target at a 15.5∘^{\circ} scattering angle. Excitation energies covered the resonance and the onset of the deep inelastic regions. We have determined for the first time the Q2Q^2 evolution of Γ1(Q2)=∫01g1(x,Q2)dx\Gamma_1(Q^2)=\int_0^{1} g_1(x,Q^2) dx, Γ2(Q2)=∫01g2(x,Q2)dx\Gamma_2(Q^2)=\int_0^1 g_2(x,Q^2) dx and d2(Q2)=∫01x2[2g1(x,Q2)+3g2(x,Q2)]dxd_2 (Q^2) = \int_0^1 x^2[ 2g_1(x,Q^2) + 3g_2(x,Q^2)] dx for the neutron in the range 0.1 GeV2^2 ≤Q2≤\leq Q^2 \leq 0.9 GeV2^2 with good precision. Γ1(Q2) \Gamma_1(Q^2) displays a smooth variation from high to low Q2Q^2. The Burkhardt-Cottingham sum rule holds within uncertainties and d2d_2 is non-zero over the measured range.Comment: 5 pages, 2 figures, submitted to Phys. Rev. Lett.. Updated Hermes data in Fig. 2 (top panel) and their corresponding reference. Updated the low x extrapolation error Fig. 2 (middle panel). Corrected references to ChiPT calculation
    • …
    corecore