714 research outputs found

    The Mitragyna speciosa (Kratom) Genome: a resource for data-mining potent pharmaceuticals that impact human health

    Get PDF
    Mitragyna speciosa (kratom) produces numerous compounds with pharmaceutical properties including the production of bioactive monoterpene indole and oxindole alkaloids. Using a linked-read approach, a 1,122,519,462 bp draft assembly of M. speciosa “Rifat” was generated with an N50 scaffold size of 1,020,971 bp and an N50 contig size of 70,448 bp that encodes 55,746 genes. Chromosome counting revealed that “Rifat” is a tetraploid with a base chromosome number of 11, which was further corroborated by orthology and syntenic analysis of the genome. Analysis of genes and clusters involved in specialized metabolism revealed genes putatively involved in alkaloid biosynthesis. Access to the genome of M. speciosa will facilitate an improved understanding of alkaloid biosynthesis and accelerate the production of bioactive alkaloids in heterologous hosts

    Biosynthesis of bioactive diterpenoids in the medicinal plant Vitex agnus‐castus

    Get PDF
    Vitex agnus‐castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus‐castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus‐castus . With the assistance of matrix‐assisted laser desorption ionisation‐mass spectrometry imaging (MALDI‐MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome‐specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus‐castus . The identified CYP, Vac CYP76BK1, was found to catalyse 16‐hydroxylation of the diol‐diterpene, peregrinol, to labd‐13Z ‐ene‐9,15,16‐triol when expressed in Saccharomyces cerevisiae . Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan‐ and lactone‐containing diterpenoids that are present in this species

    Self-organization in turbulence as a route to order in plasma and fluids

    Full text link
    Transitions from turbulence to order are studied experimentally in thin fluid layers and magnetically confined toroidal plasma. It is shown that turbulence self-organizes through the mechanism of spectral condensation. The spectral redistribution of the turbulent energy leads to the reduction in the turbulence level, generation of coherent flow, reduction in the particle diffusion and increase in the system's energy. The higher order state is sustained via the nonlocal spectral coupling of the linearly unstable spectral range to the large-scale mean flow. The similarity of self-organization in two-dimensional fluids and low-to-high confinement transitions in plasma suggests the universality of the mechanism.Comment: 5 pages, 4 figure

    Enlargement of Submicron Gas‐Borne Particles by Heterogeneous Condensation for Energy‐Efficient Aerosol Separation

    Get PDF
    To improve the efficiency of aerosol separation, a process sequence for particle enlargement by condensation of water vapor on their surface is suggested. The presented method makes use of packed columns in non-equilibrium operation to achieve supersaturation, which is required for droplet growth. Although this method is known for several years, it is not widely used in industrial processes and still needs accurate investigations for consolidation and establishment. The simulation tool AerCoDe3.0 for predicting saturation and particle growth in packed columns allows investigating the thermal energy consumption under various operation conditions. Based on the results obtained in this study, optimized arrangements of columns, which are applicable as preconditioning step for existing particle separators, are proposed

    Alpha-aminoisobutyric acid uptake in primary cultures of astrocytes

    Full text link
    Homotypically pure cultures of rat brain astrocytes were used to examine some aspects of non-neuronal A-system (alanine preferring) amino acid uptake. The Asystem specific probe, alpha-aminoisobutyric acid is transported rapidly, and a steady state distribution ratio of 9–25 is reached after 30 minute incubations. Kinetic estimates derived from uptake progress curves indicated a K m of 1.35 mM and a V max of 133 nmol/min/mg protein. Uptake is reduced in the absence of either Na + or K + . Elevations in extracellular K + , a putative metabolic modulator of neuroglia, did not affect uptake.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45428/1/11064_2004_Article_BF00965086.pd

    Anderson localization of ballooning modes, quantum chaos and the stability of compact quasiaxially symmetric stellarators

    No full text
    The radially local magnetohydrodynamic(MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHDstability is analyzed through the calculation and examination of the ballooning modeeigenvalue isosurfaces in the 3-space (s,α,θk); s is the edge normalized toroidal flux, α is the field linevariable, and θk is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of strong “quantum chaos.” The complexity of QAS marginal isosurfaces suggests that finite Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-nMHD computations are required to predict the beta limit.Research supported by U.S. DOE Contract No. DEAC02-76CH0373. John Canik held a U.S. DOE National Undergraduate Fellowship at Princeton Plasma Physics Laboratory, during the summer of 2000

    Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas

    Full text link
    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a kk-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication in Phys. Rev. Letter

    Magnetohydrodynamics and Plasma Cosmology

    Full text link
    We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.Comment: 9 pages, RevTeX, To appear in the Proceedings of the Peyresq X Meeting, IJTP Conference Serie
    • …
    corecore