695 research outputs found
Dissociative recombination measurements of HCl+ using an ion storage ring
We have measured dissociative recombination of HCl+ with electrons using a
merged beams configuration at the heavy-ion storage ring TSR located at the Max
Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the
measured absolute merged beams recombination rate coefficient for collision
energies from 0 to 4.5 eV. We have also developed a new method for deriving the
cross section from the measurements. Our approach does not suffer from
approximations made by previously used methods. The cross section was
transformed to a plasma rate coefficient for the electron temperature range
from T=10 to 5000 K. We show that the previously used HCl+ DR data
underestimate the plasma rate coefficient by a factor of 1.5 at T=10 K and
overestimate it by a factor of 3.0 at T=300 K. We also find that the new data
may partly explain existing discrepancies between observed abundances of
chlorine-bearing molecules and their astrochemical models.Comment: Accepted for publication in ApJ (July 7, 2013
Radiative rotational lifetimes and state-resolved relative detachment cross sections from photodetachment thermometry of molecular anions in a cryogenic storage ring
Photodetachment thermometry on a beam of OH in a cryogenic storage ring
cooled to below 10 K is carried out using two-dimensional, frequency and time
dependent photodetachment spectroscopy over 20 minutes of ion storage. In
equilibrium with the low-level blackbody field, we find an effective radiative
temperature near 15 K with about 90% of all ions in the rotational ground
state. We measure the J = 1 natural lifetime (about 193 s) and determine the
OH rotational transition dipole moment with 1.5% uncertainty. We also
measure rotationally dependent relative near-threshold photodetachment cross
sections for photodetachment thermometry.Comment: Manuscript LaTeX with 5 pages, 3 figures, and 1 table plus LaTeX
supplement with 12 pages, 3 figures and 3 tables. This article has been
accepted by Physical Review Letter
Low-molecular-weight cyclin E: the missing link between biology and clinical outcome
Cyclin E, a key mediator of transition during the G(1)/S cellular division phase, is deregulated in a wide variety of human cancers. Our group recently reported that overexpression and generation of low-molecular-weight (LMW) isoforms of cyclin E were associated with poor clinical outcome among breast cancer patients. However, the link between LMW cyclin E biology in mediating a tumorigenic phenotype and clinical outcome is unknown. To address this gap in knowledge, we assessed the role of LMW isoforms in breast cancer cells; we found that these forms of cyclin E induced genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. These findings suggest that high levels of LMW isoforms of cyclin E not only can predict failure to endocrine therapy but also are true prognostic indicators because of their influence on cell proliferation and genetic instability
PTEN and DNA-PK determine sensitivity and recovery in response to WEE1 inhibition in human breast cancer
Inhibition of WEE1 kinase by AZD1775 has shown promising results in clinical cancer trials, but markers predicting AZD1775 response are lacking. Here we analysed AZD1775 response in a panel of human breast cancer (BC) cell lines by global proteome/transcriptome profiling and identified two groups of basal-like BC (BLBCs): ‘PTEN low’ BLBCs were highly sensitive to AZD1775 and failed to recover following removal of AZD1775, while ‘PTEN high’ BLBCs recovered. AZD1775 induced phosphorylation of DNA-PK, protecting cells from replication-associated DNA damage and promoting cellular recovery. Deletion of DNA-PK or PTEN, or inhibition of DNA-PK sensitized recovering BLBCs to AZD1775 by abrogating replication arrest, allowing replication despite DNA damage. This was linked to reduced CHK1 activation, increased cyclin E levels and apoptosis. In conclusion, we identified PTEN and DNA-PK as essential regulators of replication checkpoint arrest in response to AZD1775 and defined PTEN as a promising biomarker for efficient WEE1 cancer therapy
Concomitant Carcinoma in situ in Cystectomy Specimens Is Not Associated with Clinical Outcomes after Surgery
Objective: The aim of this study was to externally validate the prognostic value of concomitant urothelial carcinoma in situ (CIS) in radical cystectomy (RC) specimens using a large international cohort of bladder cancer patients. Methods: The records of 3,973 patients treated with RC and bilateral lymphadenectomy for urothelial carcinoma of the bladder (UCB) at nine centers worldwide were reviewed. Surgical specimens were evaluated by a genitourinary pathologist at each center. Uni- and multivariable Cox regression models addressed time to recurrence and cancer-specific mortality after RC. Results: 1,741 (43.8%) patients had concomitant CIS in their RC specimens. Concomitant CIS was more common in organ-confined UCB and was associated with lymphovascular invasion (p < 0.001). Concomitant CIS was not associated with either disease recurrence or cancer-specific death regardless of pathologic stage. The presence of concomitant CIS did not improve the predictive accuracy of standard predictors for either disease recurrence or cancer-specific death in any of the subgroups. Conclusions: We could not confirm the prognostic value of concomitant CIS in RC specimens. This, together with the discrepancy between pathologists in determining the presence of concomitant CIS at the morphologic level, limits the clinical utility of concomitant CIS in RC specimens for clinical decision-making. Copyright (C) 2011 S. Karger AG, Base
Chromosomal instability and lack of cyclin E regulation in hCdc4 mutant human breast cancer cells
INTRODUCTION: Cyclin E, a G(1 )cyclin essential for G(1)–S phase transition, is known to have a profound effect on tumorigenesis. Elevated levels of cyclin E have been associated with breast cancer, and chromosomal instability observed in breast cancer is suggested to be associated with constitutive expression of cyclin E. It was previously demonstrated that SUM149PT human breast cancer cells show very high levels of cyclin E expression by western analysis and that they express a nonfunctional cyclin E ubiquitin ligase due to a mutation in the F-box protein hCdc4. METHODS: We examined cyclin E expression in both MCF10A and SUM149PT cells using western blot analysis and flow cytometry. Immunofluorescence was utilized for the localization of cyclin E in both normal and breast cancer cells. In addition, array comparative genomic hybridization analysis was performed to compare chromosome copy number alterations with levels of cyclin E expression among a panel of breast cancer cell lines. RESULTS: SUM149PT cells overexpress cyclin E on a cell per cell basis for the duration of the cell cycle. High cyclin E levels are maintained throughout the S phase, and SUM149PT cells exhibit an S phase delay or arrest probably due to cyclin E overexpression. In addition, comparative genomic hybridization indicated that SUM149PT cells exhibit many chromosome copy number alterations, which may reflect prior or ongoing genomic instability. However, no direct correlation was observed between cyclin E levels and genomic copy number alteration in a panel of human breast cancer cell lines. CONCLUSIONS: Cyclin E is overexpressed at high levels throughout the cell cycle in SUM149PT cells, which is in stark contrast to cyclin E degradation observed in the mid to late S phase of normal cells. SUM149PT cells are unable to regulate cyclin E and also exhibit many copy number alterations. However, there was a lack of direct correlation between cyclin E overexpression and chromosomal instability across a panel of other breast cancer cell lines examined
Study of and
The decays and have been
investigated with a sample of 225.2 million events collected with the
BESIII detector at the BEPCII collider. The branching fractions are
determined to be and . Distributions of the angle
between the proton or anti-neutron and the beam direction are well
described by the form , and we find
for and
for . Our branching-fraction
results suggest a large phase angle between the strong and electromagnetic
amplitudes describing the decay.Comment: 16 pages, 13 figures, the 2nd version, submitted to PR
First observation of the M1 transition
Using a sample of 106 million \psi(3686) events collected with the BESIII
detector at the BEPCII storage ring, we have made the first measurement of the
M1 transition between the radially excited charmonium S-wave spin-triplet and
the radially excited S-wave spin-singlet states: \psi(3686)\to\gamma\eta_c(2S).
Analyses of the processes \psi(2S)\to \gamma\eta_c(2S) with \eta_c(2S)\to
\K_S^0 K\pi and K^+K^-\pi^0 gave an \eta_c(2S) signal with a statistical
significance of greater than 10 standard deviations under a wide range of
assumptions about the signal and background properties. The data are used to
obtain measurements of the \eta_c(2S) mass (M(\eta_c(2S))=3637.6\pm
2.9_\mathrm{stat}\pm 1.6_\mathrm{sys} MeV/c^2), width
(\Gamma(\eta_c(2S))=16.9\pm 6.4_\mathrm{stat}\pm 4.8_\mathrm{sys} MeV), and the
product branching fraction (\BR(\psi(3686)\to \gamma\eta_c(2S))\times
\BR(\eta_c(2S)\to K\bar K\pi) = (1.30\pm 0.20_\mathrm{stat}\pm
0.30_\mathrm{sys})\times 10^{-5}). Combining our result with a BaBar
measurement of \BR(\eta_c(2S)\to K\bar K \pi), we find the branching fraction
of the M1 transition to be \BR(\psi(3686)\to\gamma\eta_c(2S)) = (6.8\pm
1.1_\mathrm{stat}\pm 4.5_\mathrm{sys})\times 10^{-4}.Comment: 7 pages, 1 figure, 1 tabl
Observation of a charged charmoniumlike structure in at GeV
We study the process at a
center-of-mass energy of 4.26GeV using a 827pb data sample obtained with
the BESIII detector at the Beijing Electron Positron Collider. Based on a
partial reconstruction technique, the Born cross section is measured to be
pb. We observe a structure near the
threshold in the recoil mass spectrum, which we denote as the
. The measured mass and width of the structure are
MeV/c and MeV, respectively. Its
production ratio is determined to be . The first uncertainties
are statistical and the second are systematic.Comment: 7 pages, 4 figures, 1 table; version accepted to be published in PR
- …