695 research outputs found

    Dissociative recombination measurements of HCl+ using an ion storage ring

    Get PDF
    We have measured dissociative recombination of HCl+ with electrons using a merged beams configuration at the heavy-ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the measured absolute merged beams recombination rate coefficient for collision energies from 0 to 4.5 eV. We have also developed a new method for deriving the cross section from the measurements. Our approach does not suffer from approximations made by previously used methods. The cross section was transformed to a plasma rate coefficient for the electron temperature range from T=10 to 5000 K. We show that the previously used HCl+ DR data underestimate the plasma rate coefficient by a factor of 1.5 at T=10 K and overestimate it by a factor of 3.0 at T=300 K. We also find that the new data may partly explain existing discrepancies between observed abundances of chlorine-bearing molecules and their astrochemical models.Comment: Accepted for publication in ApJ (July 7, 2013

    Radiative rotational lifetimes and state-resolved relative detachment cross sections from photodetachment thermometry of molecular anions in a cryogenic storage ring

    Full text link
    Photodetachment thermometry on a beam of OH^- in a cryogenic storage ring cooled to below 10 K is carried out using two-dimensional, frequency and time dependent photodetachment spectroscopy over 20 minutes of ion storage. In equilibrium with the low-level blackbody field, we find an effective radiative temperature near 15 K with about 90% of all ions in the rotational ground state. We measure the J = 1 natural lifetime (about 193 s) and determine the OH^- rotational transition dipole moment with 1.5% uncertainty. We also measure rotationally dependent relative near-threshold photodetachment cross sections for photodetachment thermometry.Comment: Manuscript LaTeX with 5 pages, 3 figures, and 1 table plus LaTeX supplement with 12 pages, 3 figures and 3 tables. This article has been accepted by Physical Review Letter

    Low-molecular-weight cyclin E: the missing link between biology and clinical outcome

    Get PDF
    Cyclin E, a key mediator of transition during the G(1)/S cellular division phase, is deregulated in a wide variety of human cancers. Our group recently reported that overexpression and generation of low-molecular-weight (LMW) isoforms of cyclin E were associated with poor clinical outcome among breast cancer patients. However, the link between LMW cyclin E biology in mediating a tumorigenic phenotype and clinical outcome is unknown. To address this gap in knowledge, we assessed the role of LMW isoforms in breast cancer cells; we found that these forms of cyclin E induced genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. These findings suggest that high levels of LMW isoforms of cyclin E not only can predict failure to endocrine therapy but also are true prognostic indicators because of their influence on cell proliferation and genetic instability

    PTEN and DNA-PK determine sensitivity and recovery in response to WEE1 inhibition in human breast cancer

    Get PDF
    Inhibition of WEE1 kinase by AZD1775 has shown promising results in clinical cancer trials, but markers predicting AZD1775 response are lacking. Here we analysed AZD1775 response in a panel of human breast cancer (BC) cell lines by global proteome/transcriptome profiling and identified two groups of basal-like BC (BLBCs): ‘PTEN low’ BLBCs were highly sensitive to AZD1775 and failed to recover following removal of AZD1775, while ‘PTEN high’ BLBCs recovered. AZD1775 induced phosphorylation of DNA-PK, protecting cells from replication-associated DNA damage and promoting cellular recovery. Deletion of DNA-PK or PTEN, or inhibition of DNA-PK sensitized recovering BLBCs to AZD1775 by abrogating replication arrest, allowing replication despite DNA damage. This was linked to reduced CHK1 activation, increased cyclin E levels and apoptosis. In conclusion, we identified PTEN and DNA-PK as essential regulators of replication checkpoint arrest in response to AZD1775 and defined PTEN as a promising biomarker for efficient WEE1 cancer therapy

    Concomitant Carcinoma in situ in Cystectomy Specimens Is Not Associated with Clinical Outcomes after Surgery

    Get PDF
    Objective: The aim of this study was to externally validate the prognostic value of concomitant urothelial carcinoma in situ (CIS) in radical cystectomy (RC) specimens using a large international cohort of bladder cancer patients. Methods: The records of 3,973 patients treated with RC and bilateral lymphadenectomy for urothelial carcinoma of the bladder (UCB) at nine centers worldwide were reviewed. Surgical specimens were evaluated by a genitourinary pathologist at each center. Uni- and multivariable Cox regression models addressed time to recurrence and cancer-specific mortality after RC. Results: 1,741 (43.8%) patients had concomitant CIS in their RC specimens. Concomitant CIS was more common in organ-confined UCB and was associated with lymphovascular invasion (p < 0.001). Concomitant CIS was not associated with either disease recurrence or cancer-specific death regardless of pathologic stage. The presence of concomitant CIS did not improve the predictive accuracy of standard predictors for either disease recurrence or cancer-specific death in any of the subgroups. Conclusions: We could not confirm the prognostic value of concomitant CIS in RC specimens. This, together with the discrepancy between pathologists in determining the presence of concomitant CIS at the morphologic level, limits the clinical utility of concomitant CIS in RC specimens for clinical decision-making. Copyright (C) 2011 S. Karger AG, Base

    Chromosomal instability and lack of cyclin E regulation in hCdc4 mutant human breast cancer cells

    Get PDF
    INTRODUCTION: Cyclin E, a G(1 )cyclin essential for G(1)–S phase transition, is known to have a profound effect on tumorigenesis. Elevated levels of cyclin E have been associated with breast cancer, and chromosomal instability observed in breast cancer is suggested to be associated with constitutive expression of cyclin E. It was previously demonstrated that SUM149PT human breast cancer cells show very high levels of cyclin E expression by western analysis and that they express a nonfunctional cyclin E ubiquitin ligase due to a mutation in the F-box protein hCdc4. METHODS: We examined cyclin E expression in both MCF10A and SUM149PT cells using western blot analysis and flow cytometry. Immunofluorescence was utilized for the localization of cyclin E in both normal and breast cancer cells. In addition, array comparative genomic hybridization analysis was performed to compare chromosome copy number alterations with levels of cyclin E expression among a panel of breast cancer cell lines. RESULTS: SUM149PT cells overexpress cyclin E on a cell per cell basis for the duration of the cell cycle. High cyclin E levels are maintained throughout the S phase, and SUM149PT cells exhibit an S phase delay or arrest probably due to cyclin E overexpression. In addition, comparative genomic hybridization indicated that SUM149PT cells exhibit many chromosome copy number alterations, which may reflect prior or ongoing genomic instability. However, no direct correlation was observed between cyclin E levels and genomic copy number alteration in a panel of human breast cancer cell lines. CONCLUSIONS: Cyclin E is overexpressed at high levels throughout the cell cycle in SUM149PT cells, which is in stark contrast to cyclin E degradation observed in the mid to late S phase of normal cells. SUM149PT cells are unable to regulate cyclin E and also exhibit many copy number alterations. However, there was a lack of direct correlation between cyclin E overexpression and chromosomal instability across a panel of other breast cancer cell lines examined

    Study of J/ψppˉJ/\psi\to p\bar{p} and J/ψnnˉJ/\psi\to n\bar{n}

    Get PDF
    The decays J/ψppˉJ/\psi\to p\bar{p} and J/ψnnˉJ/\psi\to n\bar{n} have been investigated with a sample of 225.2 million J/ψJ/\psi events collected with the BESIII detector at the BEPCII e+ee^+e^- collider. The branching fractions are determined to be B(J/ψppˉ)=(2.112±0.004±0.031)×103\mathcal{B}(J/\psi\to p\bar{p})=(2.112\pm0.004\pm0.031)\times10^{-3} and B(J/ψnnˉ)=(2.07±0.01±0.17)×103\mathcal{B}(J/\psi\to n\bar{n})=(2.07\pm0.01\pm0.17)\times10^{-3}. Distributions of the angle θ\theta between the proton or anti-neutron and the beam direction are well described by the form 1+αcos2θ1+\alpha\cos^2\theta, and we find α=0.595±0.012±0.015\alpha=0.595\pm0.012\pm0.015 for J/ψppˉJ/\psi\to p\bar{p} and α=0.50±0.04±0.21\alpha=0.50\pm0.04\pm0.21 for J/ψnnˉJ/\psi\to n\bar{n}. Our branching-fraction results suggest a large phase angle between the strong and electromagnetic amplitudes describing the J/ψNNˉJ/\psi\to N\bar{N} decay.Comment: 16 pages, 13 figures, the 2nd version, submitted to PR

    First observation of the M1 transition ψ(3686)γηc(2S)\psi(3686)\to \gamma\eta_c(2S)

    Get PDF
    Using a sample of 106 million \psi(3686) events collected with the BESIII detector at the BEPCII storage ring, we have made the first measurement of the M1 transition between the radially excited charmonium S-wave spin-triplet and the radially excited S-wave spin-singlet states: \psi(3686)\to\gamma\eta_c(2S). Analyses of the processes \psi(2S)\to \gamma\eta_c(2S) with \eta_c(2S)\to \K_S^0 K\pi and K^+K^-\pi^0 gave an \eta_c(2S) signal with a statistical significance of greater than 10 standard deviations under a wide range of assumptions about the signal and background properties. The data are used to obtain measurements of the \eta_c(2S) mass (M(\eta_c(2S))=3637.6\pm 2.9_\mathrm{stat}\pm 1.6_\mathrm{sys} MeV/c^2), width (\Gamma(\eta_c(2S))=16.9\pm 6.4_\mathrm{stat}\pm 4.8_\mathrm{sys} MeV), and the product branching fraction (\BR(\psi(3686)\to \gamma\eta_c(2S))\times \BR(\eta_c(2S)\to K\bar K\pi) = (1.30\pm 0.20_\mathrm{stat}\pm 0.30_\mathrm{sys})\times 10^{-5}). Combining our result with a BaBar measurement of \BR(\eta_c(2S)\to K\bar K \pi), we find the branching fraction of the M1 transition to be \BR(\psi(3686)\to\gamma\eta_c(2S)) = (6.8\pm 1.1_\mathrm{stat}\pm 4.5_\mathrm{sys})\times 10^{-4}.Comment: 7 pages, 1 figure, 1 tabl

    Observation of a charged charmoniumlike structure in e+e(DDˉ)±πe^+e^- \to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp at s=4.26\sqrt{s}=4.26GeV

    Full text link
    We study the process e+e(DDˉ)±πe^+e^- \to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp at a center-of-mass energy of 4.26GeV using a 827pb1^{-1} data sample obtained with the BESIII detector at the Beijing Electron Positron Collider. Based on a partial reconstruction technique, the Born cross section is measured to be (137±9±15)(137\pm9\pm15)pb. We observe a structure near the (DDˉ)±(D^{*} \bar{D}^{*})^{\pm} threshold in the π\pi^\mp recoil mass spectrum, which we denote as the Zc±(4025)Z^{\pm}_c(4025). The measured mass and width of the structure are (4026.3±2.6±3.7)(4026.3\pm2.6\pm3.7)MeV/c2^2 and (24.8±5.6±7.7)(24.8\pm5.6\pm7.7)MeV, respectively. Its production ratio σ(e+eZc±(4025)π(DDˉ)±π)σ(e+e(DDˉ)±π)\frac{\sigma(e^+e^-\to Z^{\pm}_c(4025)\pi^\mp \to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp)}{\sigma(e^+e^-\to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp)} is determined to be 0.65±0.09±0.060.65\pm0.09\pm0.06. The first uncertainties are statistical and the second are systematic.Comment: 7 pages, 4 figures, 1 table; version accepted to be published in PR
    corecore