853 research outputs found

    Electronic structure investigation of the cubic inverse perovskite Sc3AlN

    Full text link
    The electronic structure and chemical bonding of the recently discovered inverse perovskite Sc3AlN, in comparison to ScN and Sc metal have been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Sc L, N K, Al L1, and Al L2,3 emission spectra are compared with calculated spectra using first principle density-functional theory including dipole transition matrix elements. The main Sc 3d - N 2p and Sc 3d - Al 3p chemical bond regions are identified at -4 eV and -1.4 eV below the Fermi level, respectively. A strongly modified spectral shape of 3s states in the Al L2,3 emission from Sc3AlN in comparison to pure Al metal is found, which reflects the Sc 3d - Al 3p hybridization observed in the Al L1 emission. The differences between the electronic structure of Sc3AlN, ScN, and Sc metal are discussed in relation to the change of the conductivity and elastic properties.Comment: 11 pages, 5 picture

    Acute Phase Proteins in Response to Dictyocaulus viviparus Infection in Calves

    Get PDF
    Three experiments were carried out to examine the acute phase response, as measured by the acute phase proteins (APP) haptoglobin, serum amyloid A (SAA) and fibrinogen, in calves infected with lungworm, Dictyocaulus vivparus. In addition, eosinophil counts were analysed. Three different dose models were used in 3 separate experiments: I) 250 D. viviparus infective third stage larvae (L3) once daily for 2 consecutive days, II) 100 D. viviparus L3 once daily for 5 consecutive days, and III) 2000 L3 once. All 3 dose regimes induced elevated levels of haptoglobin, SAA and fibrinogen, although there was considerable variation both between and within experiments. A significant increase was observed in all 3 APP at one or several time points in experiment I and III, whereas in experiment II, the only significant elevation was observed for fibrinogen at one occasion. The eosinophil numbers were significantly elevated in all 3 experiments. The results show that lungworm infection can induce an acute phase response, which can be monitored by the selected APP. Elevated APP levels in combination with high numbers of eosinophils in an animal with respiratory disease may be used as an indicator of lung worm infection, and help the clinician to decide on treatment. However, high numbers of eosinophils and low levels of APP do not exclude a diagnosis of lungworm. Thus, lungworm infection may not be detected if measurements of APP are used to assess calf health in herds or individual animals

    Managing the supercell approximation for charged defects in semiconductors: finite size scaling, charge correction factors, the bandgap problem and the ab initio dielectric constant

    Get PDF
    The errors arising in ab initio density functional theory studies of semiconductor point defects using the supercell approximation are analyzed. It is demonstrated that a) the leading finite size errors are inverse linear and inverse cubic in the supercell size, and b) finite size scaling over a series of supercells gives reliable isolated charged defect formation energies to around +-0.05 eV. The scaled results are used to test three correction methods. The Makov-Payne method is insufficient, but combined with the scaling parameters yields an ab initio dielectric constant of 11.6+-4.1 for InP. Gamma point corrections for defect level dispersion are completely incorrect, even for shallow levels, but re-aligning the total potential in real-space between defect and bulk cells actually corrects the electrostatic defect-defect interaction errors as well. Isolated defect energies to +-0.1 eV are then obtained using a 64 atom supercell, though this does not improve for larger cells. Finally, finite size scaling of known dopant levels shows how to treat the band gap problem: in less than about 200 atom supercells with no corrections, continuing to consider levels into the theoretical conduction band (extended gap) comes closest to experiment. However, for larger cells or when supercell approximation errors are removed, a scissors scheme stretching the theoretical band gap onto the experimental one is in fact correct.Comment: 11 pages, 3 figures (6 figure files). Accepted for Phys Rev

    The Lanczos potential for Weyl-candidate tensors exists only in four dimensions

    Get PDF
    We prove that a Lanczos potential L_abc for the Weyl candidate tensor W_abcd does not generally exist for dimensions higher than four. The technique is simply to assume the existence of such a potential in dimension n, and then check the integrability conditions for the assumed system of differential equations; if the integrability conditions yield another non-trivial differential system for L_abc and W_abcd, then this system's integrability conditions should be checked; and so on. When we find a non-trivial condition involving only W_abcd and its derivatives, then clearly Weyl candidate tensors failing to satisfy that condition cannot be written in terms of a Lanczos potential L_abc.Comment: 11 pages, LaTeX, Heavily revised April 200

    Diffusion mechanism of Zn in InP and GaP from first principles

    Get PDF
    The diffusion mechanism of Zn in GaP and InP has been investigated using first-principles computational methods. It is found that the kickout mechanism is the favored diffusion process under all doping conditions for InP, and under all except n-type conditions for GaP. In n-type GaP the dissociative mechanism is probable. In both p-type GaP and InP, the diffusing species is found to be Zni+2. The activation energy for the kickout process is 2.49 eV in GaP and 1.60 eV in InP, and therefore unintentional diffusion of Zn should be a larger concern in InP than in GaP. The dependence of the activation energy both on the doping conditions of the material and on the stoichiometry is explained, and found to be in qualitative agreement with the experimentally observed dependencies. The calculated activation energies agree reasonably with experimental data, assuming that the region from which Zn diffuses is p type. Explanations are also found as to why Zn tends to accumulate at pn junctions in InP and to why a relatively low fraction of Zn is found on substitutional sites in InP

    Breakdown of cation vacancies into anion vacancy-antisite complexes on III-V semiconductor surfaces

    Get PDF
    An asymmetric defect complex originating from the cation vacancy on (110) III-V semiconductor surfaces which has significantly lower formation energy than the ideal cation vacancy is presented. The complex is formed by an anion from the top layer moving into the vacancy, leaving an anion antisite–anion vacancy defect complex. By calculating the migration barrier, it is found that any ideal cation vacancies will spontaneously transform to this defect complex at room temperature. For stoichiometric semiconductors the defect formation energy of the complex is close to that of the often-observed anion vacancy, giving thermodynamic equilibrium defect concentrations on the same order. The calculated scanning tunneling microscopy (STM) plot of the defect complex is also shown to be asymmetric in the [11¯0] direction, in contrast to the symmetric one of the anion vacancy. This might therefore explain the two distinct asymmetric and symmetric vacancy structures observed experimentally by STM

    Bonding mechanism in the nitrides Ti2AlN and TiN: an experimental and theoretical investigation

    Full text link
    The electronic structure of nanolaminate Ti2AlN and TiN thin films has been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Ti L, N K, Al L1 and Al L2,3 emission spectra are compared with calculated spectra using ab initio density-functional theory including dipole transition matrix elements. Three different types of bond regions are identified; a relatively weak Ti 3d - Al 3p bonding between -1 and -2 eV below the Fermi level, and Ti 3d - N 2p and Ti 3d - N 2s bonding which are deeper in energy observed at -4.8 eV and -15 eV below the Fermi level, respectively. A strongly modified spectral shape of 3s states of Al L2,3 emission from Ti2AlN in comparison to pure Al metal is found, which reflects the Ti 3d - Al 3p hybridization observed in the Al L1 emission. The differences between the electronic and crystal structures of Ti2AlN and TiN are discussed in relation to the intercalated Al layers of the former compound and the change of the materials properties in comparison to the isostructural carbides.Comment: 18 pages, 7 figures; http://link.aps.org/doi/10.1103/PhysRevB.76.19512

    Some Restrictions Abroad Affecting Corporations

    Get PDF
    A neutron detector concept based on solid layers of boron carbide enriched in 1 B has been in development for the last few years as an alternative for He-3 by collaboration between the ILL, ESS and Linkoping University. This Multi-Grid detector uses layers of aluminum substrates coated with (B4C)-B-10 on both sides that are traversed by the incoming neutrons. Detection is achieved using a gas counter readout principle. By segmenting the substrate and using multiple anode wires, the detector is made inherently position sensitive. This development is aimed primarily at neutron scattering instruments with large detector areas, such as time-of-flight chopper spectrometers. The most recent prototype has been built to be interchangeable with the He-3 detectors of IN6 at ILL. The 1 B detector has an active area of 32 x 48 cm(2). It was installed at the IN6 instrument and operated for several weeks, collecting data in parallel with the regularly scheduled experiments, thus providing the first side-by-side comparison with the conventional He-3 detectors. Results include an efficiency comparison, assessment of the in-detector scattering contribution, sensitivity to gamma-rays and the signal-to-noise ratio in time-of-flight spectra. The good expected performance has been confirmed with the exception of an unexpected background count rate. This has been identified as natural alpha activity in aluminum. New convertor substrates are under study to eliminate this source of background

    The Extension of the RAINS Model to Greenhouse Gases

    Get PDF
    Many of the traditional air pollutants and greenhouse gases have common sources, offering a cost-effective potential for simultaneous improvements for both traditional air pollution problems as well as climate change. A methodology has been developed to extend the RAINS integrated assessment model to explore synergies and trade-offs between the control of greenhouse gases and air pollution. With this extension, the RAINS model allows now the assessment of emission control costs for the six greenhouse gases covered under the Kyoto Protocol (CO2, CH4, N2O and the three F-gases) together with the emissions of air pollutants SO2, NOX, VOC, NH3 AND PM. In the first phase of the study, emissions, costs and control potentials for the six greenhouse gases covered in the Kyoto Protocol have been estimated and implemented in the RAINS model. Emission estimates are based on methodologies and emission factors proposed by the IPCC emission reporting guidelines. The large number of control options for greenhouse gases have been grouped into approximately 150 packages of measures and implemented in the RAINS model for the European countries. These control options span a wide range of cost-effectiveness. There a re certain advanced technical measures with moderate costs, and certain measures exist for which the economic assessment suggests even negative costs, if major side impacts (cost savings) are calculated. Illustrative example calculations clearly demonstrate that conclusions on the cost-effectiveness of emission reduction strategies are crucially depending on the boundaries of the analysis. The net cost of greenhouse gas control strategies are significantly lower if the immediate cost-savings from avoided air pollution control costs are taken into consideration. For a 15 percent reduction of the CO2 emissions from the power sector in the EU, avoided pollution control costs could compensate two third of the CO2 control costs. Depending on the design of the control strategy, net costs of greenhouse gas mitigation could even be negative, which is in stark contrast to conclusions for a CO2 only strategy. However, there are certain greenhouse gas mitigation measures, such as increased use of biomass that could deteriorate the negative impacts of air pollution, while yielding very little economic synergies. A combined approach towards greenhouse gas mitigation and air pollution control would not only reveal economic synergies, but also harness additional environmental benefits. Even in a situation with stringent emission control requirements for air pollution as it is required by the EU legislation, modifications in fuel use geared towards reductions of greenhouse gases could lead as a side impact to significant reductions in the residual emissions of air pollutants. The economic benefits of such "windfall emission reductions" could be substantial. The extended RAINS model framework will offer a tool to systematically investigate such economic and environmental synergies between greenhouse gas mitigation and air pollution control while avoiding negative side impacts
    • 

    corecore