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The errors arising in ab initio density functional theory studies of semiconductor point defects using the
supercell approximation are analyzed. It is demonstrated that �a� the leading finite size errors are inverse linear
and inverse cubic in the supercell size and �b� finite size scaling over a series of supercells gives reliable
isolated charged defect formation energies to around ±0.05 eV. The scaled results are used to test three
correction methods. The Makov-Payne method is insufficient, but combined with the scaling parameters yields
an ab initio dielectric constant of 11.6±4.1 for InP. � point corrections for defect level dispersion are com-
pletely incorrect, even for shallow levels, but realigning the total potential in real-space between defect and
bulk cells actually corrects the electrostatic defect-defect interaction errors as well. Isolated defect energies to
±0.1 eV are then obtained using a 64 atom supercell, though this does not improve for larger cells. Finally,
finite size scaling of known dopant levels shows how to treat the band gap problem: in �200 atom supercells
with no corrections, continuing to consider levels into the theoretical conduction band �extended gap� comes
closest to experiment. However, for larger cells or when supercell approximation errors are removed, a scissors
scheme stretching the theoretical band gap onto the experimental one is in fact correct.
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I. INTRODUCTION

Understanding the properties of point defects and dopants
is of key importance in studying the electrical and optical
properties of semiconductors. While various experimental
techniques have been developed over the last half century it
is only in recent years that they have started to be matched
by accurate first principles computational techniques. Devel-
opments in computing power have now made ab initio den-
sity functional theory1 �DFT� one of the most versatile
atomic scale tools available for the investigation of defect
properties in semiconductors and insulators. The key quan-
tity to calculate is the defect formation energy

Ed
C = ET

C�defectq� − ET
C�no defect� + �

i

�ini − q��v + �F� ,

�1�

where ET
C�defect� and ET

C�no defect� are the total energy of
the supercell C with and without the defect �of charge q�
calculated using the same values of planewave cutoff,
k-point grid, etc., to make use of the cancellation of errors.
The defect is formed by adding/removing ni atoms of chemi-
cal potential �i. �F is the Fermi level, measured from �v, the
valence band edge �VBE�. Almost all properties of a defect
can be derived from variations in and differences between
formation energies. The method is very powerful, but critical
limitations remain, two of the most important being the rela-
tively small number of atoms which can be treated and the
effect of the approximations, such as the local density ap-
proximation �LDA� and generalized gradient approximation
�GGA�, required to solve the DFT itself. These treat quantum
many body correlation and exchange effects incompletely,

which in the case of semiconductors and insulators results in
a roughly 50% underestimation of the bandgap. This in turn
has severe consequences for the calculation of defect transfer
levels, the values of �F at which the most stable charge state
of the defect changes, given by the difference in Ed

C between
the two states. The positions of the transfer levels govern
whether the defect will be a single or multiple acceptor or
donor, with levels deep inside the gap, or with shallow levels
near to the band edges. Since the predicted band gap differs
so strongly from the experimental one it is very hard to map
the calculated transfer levels onto the experimental gap and
hence predict the electrical properties of the material.

Meanwhile, the small number of atoms involved �100s or
1000s� means that the boundary conditions become very im-
portant. One of the most common approaches is to use peri-
odic boundary conditions �PBCs� together with a plane wave
basis set. 2 A supercell containing the defect in question is
repeated periodically throughout space. The cell boundary
thus looks bulklike, rather than being a vacuum as with open
boundary conditions. However, it also means that the defect
interacts with an infinite array of images of itself seen in the
PBCs. This alters Ed

C, making it �and most other defect prop-
erties� supercell size-dependent. The “true” defect properties
are only recovered in the limit of an infinitely large supercell,
equivalent to the limit of an isolated defect. This problem is
particularly severe in the case of charged defects, where the
Madelung energy becomes infinite if the charge is not neu-
tralized using a uniform jellium background.3 Even with jel-
lium, the calculated formation energies can be wrong by sev-
eral eV in supercells of the order of 10s or 100s of atoms,
and we have previously shown4,5 that finite size errors on this
scale can even arise for neutral defects. Various authors6–8
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have attempted to create correction schemes to estimate and
remove these errors, the most widely known being that of
Makov and Payne.8 Although these corrections are often
used their accuracy has been strongly questioned, with sev-
eral studies suggesting that they are not reliable enough for
regular use.6,9,10

We previously4,5 suggested that the supercell size errors
can instead be eliminated by calculating the same defect
properties in a series of supercells of different sizes but the
same symmetry and then finite size scaling the results to
recover those of the infinite supercell. We found that Ed

C var-
ies with the supercell size L as

Ed
C�L� = Ed

� + a1L−1 + anL−n, �2�

where a1, an, and Ed
� are fitting parameters, Ed

� being the
finite size-scaled formation energy corresponding to an infi-
nitely large supercell. The linear term has been discussed
many times previously, first by Leslie and Gillian.3 For neu-
tral defects we found the correct value for n to be 3. This is
actually very intuitive: most sources of error should vary
with either the supercell size L �the defect-defect image dis-
tance� or with the cell volume L3 �proportional to the jellium
charge density, the number of atoms, the number of elec-
trons, etc.�. Terms scaling with the surface area 6L2 seem
unlikely to be dominant.

Here, two further sources of error must also be consid-
ered. First, since the electrostatic potential in a supercell with
PBCs is only defined up to a constant, the zero on the energy
scale must be chosen arbitrarily in each calculation. In the
case of most pseudopotential codes �including the one we
use� this occurs as an implicit average over values appropri-
ate to each atom species in the supercell, weighted by the
number of atoms of each species. This means that the nu-
merical value of �F entering Eq. �1� changes with the con-
tents of the cell, leading to an additional finite size error. If
the number of defects per supercell is constant then this error
decreases with the number of atoms in the cell—essentially
with the volume of the cell L3. Hence this error is completely
taken care of in the infinite supercell limit of our finite size
scaling scheme. For individual supercells, Van de Walle and
Neugebauer10 suggest correcting the error by realigning the
potential in the defect cell to that of the bulk, using its real-
space value at some chosen point in a bulklike region far
from the defect. �We here use the point furthest from the
defect in the unrelaxed cell.�

Secondly, additional errors come from the dispersion of
the defect levels introduced by overlap between the defect
state wave functions and their PBC images. It has been
suggested11 that this artificially raises Ed

C when k points other
than just the � point are used. It is suggested11 that Ed

C should
then be shifted by q� ��D

� −�D
KS�, where �D

� and �D
KS are the

values of the Kohn-Sham level corresponding to the defect
state calculated in the defect cell at the � point and averaged
over the sampled k points respectively. The assumption is
that the value of the defect level is correct at the � point, so
the difference between that and the k-point averaged value
should be removed. It has been shown by Höglund et al.12

that this is completely incorrect for the example of the phos-
phorus antisite in GaP. By plotting the “band structure” of

the defect level in different sized supercells it was shown that
the defect level in the smaller cells is more or less correct
when averaged over the sampled k points, but much too low
at the � point. The same is also true for the As vacancy on
the GaAs�110� surface, for example.13 Van de Walle and
Neugebauer10 instead point out10 that in this respect there is
a fundamental difference between deep levels such as these
and shallow defect levels. They suggest that the correction
should only be applied when evaluating transfer levels for
shallow donors and acceptors.

In the current paper we will show in Sec. III that Eq. �2�
with n=3 also holds for charged defects, so that finite size
scaling can be used to produce fully finite-size corrected de-
fect formation and other energies, with well defined error
bars and uncertainty. To do this we will study 11 example
defects in the zinc-blende structured III-V semiconductor
InP. These are chosen to include all types of native defects
�vacancies, antisites, and interstitials� as well as some com-
mon dopants at both substitutional and interstitial sites. Each
is studied in one charge state only, usually the one that pre-
vious studies5,14 suggest it has over the majority of the band-
gap. The specific choices have been made to include all non-
zero values from −3 to +3.

These results will also enable us in Sec. IV to perform the
most objective and comprehensive reliability test we are cur-
rently aware of on other, computationally cheaper, correction
schemes. �Previous tests rely on only one or two—usually
rather simple—examples, and do not generally have reliable
isolated formation energies to compare with.� We will test
the Makov-Payne scheme, potential realignment and disper-
sion corrections for shallow levels. In Sec. IV D we will also
derive an ab initio dielectric constant for InP by combining
the scaling results with those of the Makov-Payne correction
scheme. Finally, in Sec. V we will use finite size scaling to
provide the first clear-cut answer to the problem of mapping
LDA or GGA transfer levels onto the experimental bandgap.
Computational details are in the next section, and in Sec. VI
we will conclude.

II. COMPUTATIONAL DETAILS

We use plane-wave ab initio DFT �Ref. 1� within the local
density approximation �LDA� together with ultrasoft
pseudopotentials15 �USPP� using the VASP code.16 Since we
expect �at least� a three parameter fit we need at least four
supercells. These must all be of the same symmetry since the
errors scale differently for different symmetries. We choose
simple cubic supercells containing 8, 64, 216, and 512 at-
oms. It would be preferable to replace the 8 atom cell by the
1000 atom one, but our computing resources are currently
insufficient for k-point converged calculations with 1000 at-
oms. On the other hand, we previously found that, somewhat
surprisingly, the 8 atom supercell is good enough in most
cases: formation energies in this cell usually lie very close to
the scaling curves, providing satisfactorily small error bars
on the scaled values. Similarly, memory limitations force us
to treat the indium 4d electrons as core, even though they are
comparatively shallow: about 14.5 eV below the VBE. This
leads5 to errors of up to �0.5 eV, but these are essentially
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supercell size-independent. They can easily be estimated in,
say, the 64 atom cell and added back onto the scaled Ed

� at
the end. Our optimized LDA lattice constant using these cho-
sen pseudopotentials17 is 5.827 Å and the band gap is
0.667 eV, compared to 5.869 Å and 1.344 eV in experiment.
We use �P=3.485 eV and �In=6.243 eV, corresponding to
stoichiometric conditions, together with �Zn=1.891 eV, �Si
=5.977 eV, and �S=4.600 eV. For the 64 atom cell a plane-
wave cutoff energy of 200 eV and a Monkhorst-Pack 4�4
�4 k-point grid18 was previously found17 sufficient to re-
strict errors to O�0.01 eV� or less. When analyzing the errors
arising from the supercell approximation itself, nonfinite
size-dependent errors5 �from the In pseudopotential, plane-
wave cutoff, etc.� are not a problem. However, we do need to
keep the k-point sampling errors down to at least the meV
scale, since this convergence rate varies with supercell size.
This is a much higher convergence criterion than is normally
practical, necessary or even meaningful, and it is the reason
that we pick only a limited number of example defects for
this study. This convergence level can be achieved5 by using
the average

Ed
C =

�
N

N3Ed
C�N�

�
N

N3
�3�

weighted by the number of points in the full Brillouin zone,
where Ed

C�N� is the formation energy calculated using an N
�N�N Monkhorst-Pack k-point grid. The sum over N is
taken up to 12 in the 8 atom cell, 8 in the 64 atom cell and 4,
or for certain cases 6, in the 216 and 512 atom supercells in
the unrelaxed geometries. �The weighted mean Ed

C converges
much faster than the unweighted mean or the individual val-
ues Ed

C�N� themselves.�
We present both nonrelaxed �ions at ideal lattice sites� and

relaxed calculations. No restrictions are placed upon the
symmetry of relaxations, but we do not allow atoms located
on the surface of the cell to relax. The relaxation energy

�relax�N� = Ed
C:Rx�N� − Ed

C:Id�N� , �4�

where Ed
C:Rx�N� and Ed

C:Id�N� are Ed
C�N� with atoms at relaxed

and ideal positions, respectively, converges faster with N
than either Ed

C:Rx�N� or Ed
C:Id�N�. Hence we save computa-

tional time by approximating the relaxed formation energies
Ed

C:Rx by

Ed
C:Rx � Ed

C:Id − �relax�N� = Ed
C:Id + Ed

C:Rx�N� − Ed
C:Id�N� .

�5�

The relaxation energies used are weighted averages using 6
�6�6 and 8�8�8 k-point grids in the 8 atom cell, 2
�2�2 and �if the convergence is uncertain� 4�4�4 grids
in the 64 atom cell and 2�2�2 in the 216 and 512 atom
supercells. For the latter cells we usually restrict the k-point
grid to the irreducible Brillouin zone of the undisturbed bulk
lattice. In other words, we use just the special k point
�0.25,0.25,0.25�: the first Chadi-Cohen k point.19 This re-
striction is equivalent to assuming that the distortion in the

band structure due to the presence of the defect is either
localized �thus important only very near �� or symmetric. It
introduces a small error whose significance again disappears
in the large supercell limit.

III. FINITE SIZE SCALING OF DEFECT FORMATION
ENERGIES

A. Scaled formation energies for the example defects

Figure 1 shows the formation energy scaling for the 11
example defects in InP. The scaling curves using the uncor-
rected, as-calculated values are shown as solid lines in the
figures �black in the online color version�. Their y-axis inter-
sects give the Ed

� values listed in Table I. The curves also
serve to predict the formation energy which would be ex-
pected in any finite sized supercell: for example, the forma-
tion energies in the 8000 atom supercell are those at 1 /L
=0.0172 in the figures. We can estimate how accurate the Ed

�

values are by adding the four dotted �black� curves shown for
each example in Fig. 1, in each of which one of the four data
points has been omitted. �Note that for some cases the errors
are so small that the dotted lines are hard to pick out, but
they are still present in the figure.� The spread in y-axis in-
tersects gives the error bars listed in the table. This is one of
the particular advantages of using finite size scaling: it is
possible not only to correct the finite size errors themselves,
but also to obtain a well defined uncertainty on the resulting
energies—something other correction schemes cannot pro-
vide.

The errors obtained are on the 0.01–0.1 eV range or be-
low �smaller errors are rounded to 0.01 eV� and can doubt-
less be further improved if still larger supercells are used.
Note that, by construction, the errors which arise if only the
8, 64, and 216 atom supercells are used for the scaling are
also on this 0.01–0.1 eV level �see Table I�. The fact that
such small error bars can be obtained indicates that �a� scal-
ing is a viable and practical approach to supercell approxi-
mation errors, �b� the k-point convergence is sufficient for
our current purpose, and �c� our enforced use of the 8 atom
supercell is actually reasonable, for the same reasons de-
scribed above and previously.5

B. Form of the scaling

The choice of n=3 again provides the best overall fit to
the data, both for relaxed and nonrelaxed calculations. Nor-
malized �2 tests5 show that on average n=2 provides fits 2.9
times worse than n=3 while n=4 is 2.2 times worse. We
note, however, that there are additional small �probably
O�0.1� eV or less� short-ranged errors present which decay
exponentially with supercell size. These arise chiefly from
the direct overlap of bound defect states with their PBC im-
ages and the resulting dispersion of the defect levels. In the
case of relaxed energies some additional short ranged errors
can appear because defects in the 8 atom cell are only sur-
rounded by 1 shell of relaxable atoms. The effect of this
upon the form of the scaling can be seen in Fig. 2. Here we
show the scaling of the elastic contribution to the finite size
errors. This is done by calculating formation energies in the
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216 atom cell only, so that the electrostatic errors are essen-
tially constant. The number of shells of atoms permitted to
relax around the defect is varied and the resulting formation
energies are plotted against the inverse of the radius of the
outermost relaxed atom shell. Hence the y intersect corre-
sponds to the formation energy expected if an infinite num-
ber of shells are relaxed around the defect, but with the elec-
trostatic errors inherent for the 216 atom supercell. As
expected, and as for the neutral defects,5 the elastic errors are
predominantly linear. Indeed, if the “one shell only” point
from each curve is omitted then a linear fit works perfectly.
�Solid lines in Fig. 2.� The one shell only point corresponds
to relaxations in the 8 atom cell, so we expect that the elastic
contribution to the supercell approximation errors scales lin-
early with supercell size apart from some additional short
range errors essentially only affecting the 8 atom cell.

These various short ranged errors have nevertheless only
a very limited impact upon the final results, introducing only
some additional scatter in the curves in Fig. 1, and hence
leading to larger error bars in some cases. They also lead to
n=2 or n=4 actually providing the best fit for some indi-
vidual defects. However, in these latter cases the fitting with

n=3 is almost always a very close second. These problems
can be overcome in a few years time once improved com-
puting resources allow the study to be repeated using the
1000 atom supercell. For now we can still conclude that the
elastic errors are essentially inverse linear in supercell size,
while the total formation energy errors �relaxed or unrelaxed�
do indeed scale with the inverse-linear dimension and the
inverse volume of the supercell.

IV. ASSESSMENT OF CORRECTION SCHEMES

In addition to the as-calculated formation energies, Fig. 1
also shows the formation energy scaling using various cor-
rection schemes. For clarity and space we do not show all
possible corrections for all example defects, but results for
all schemes are listed in Tables I and II. All schemes recover
the correct formation energy in the infinite supercell limit,
but not all produce improvements over the uncorrected for-
mation energies for smaller supercells. This is shown in
Table 2, which lists the residual errors �relative to the infinite
supercell limit� when the corrections are applied in the 64
atom cell. The uncorrected 64 atom cell formation energies

FIG. 1. �Color online� Scaling of ��� unrelaxed and ��� relaxed formation energies. Curves are fits to Eq. �2� with n=3. Solid �black�
curves are fits to the four points as calculated �no corrections.� Dotted �black� lines each have one cell omitted for accuracy assessment.
Scaling of the calculated values with various correction factors are shown for certain examples, as follows. Potential realignment: long
dashed �red� lines in panels �a� to �g�, and accuracy assessment for them: dotted �red� lines in panels �a� to �d�. Dispersion corrections: short
dashed �brown� lines in �e� and �f�. Dispersion+potential corrections combined: dot-dashed �purple� lines in �e� and �f�. First order �L−1�
Makov-Payne corrections as dot-dot-dashed �blue� lines in panels �g� to �j�. First+ third order �L−1+L−3� Makov-Payne corrections: short
dashed �pink� lines in �h� to �j�. First order Makov-Payne+potential corrections combined: dash-dash-dot �green� lines in panel �g�.
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contain average errors of about 0.5–0.6 eV, while using the
potential realignment scheme produces errors of around
0.1 eV. The Makov-Payne scheme does much worse �aver-
age errors around 0.1–0.4 eV, but often much larger� and the
dispersion “corrections” produce errors which can be even
larger than those in the uncorrected formation energies.

A. Potential realignment

The potential realignment scheme is illustrated by the
long-dashed �red� curves and points in Figs. 1�a�–1�g�. Even

by the 64 atom supercell the values are very good indeed.
However, a lot of additional scatter is introduced into the
corrected formation energies Ed

C,	. Indeed, the average errors
relative to �the uncorrected� Ed

� do not shrink at all with
increasing supercell size: 0.07 eV in the 64 atom cell,
0.10 eV in the 216 atom cell, and 0.09 eV in the 512 atom
cell �see Table II�. This leads to wide error bars if the Ed

C,	

values are scaled to give the infinite supercell limit Ed
�,	. We

have derived scaling error bars by the same technique de-
scribed above. The resulting Ed

�,	 values and error bars are
listed in Table I, although the �red� dotted curves with data
points omitted are only shown in Figs. 1�a�–1�d�. We find
error bars of up to ±0.78 eV, average ±0.24 eV. This means
that potential realignment is a useful correction for the re-
sults from individual supercells, but should not be used if
more accurate results or defined error bars on results are
required. In that case nonrealigned values should be scaled.
These error bars are certainly too large to provide a basis for
analysis of other correction schemes. The reason is that the
correction scheme, good though it is, is not actually complete
or correct. Even in the largest supercells, the point furthest
from the defect is not bulklike, as the scheme assumes, re-
sulting in either an over estimate or an under estimate, de-
pending upon the specific conditions.

B. Dispersion corrections

The dispersion correction scheme is illustrated for shal-
low donors and acceptors in Figs. 1�e� and 1�f� and in Table
I, both with �short dashed, brown curves� and without �dot-
dashed, purple curves� potential alignment. Although the ac-
ceptor states fare better than the donors, the “corrected” val-

TABLE I. Scaled relaxed and unrelaxed �ideal lattice sites� formation energies with �Ed
�,	� and without �Ed

�� potential corrections, for
various example defects in InP. Note that the error bars are not actually symmetric: the widest has been listed in each case. 
�L−1� and 
�L−3�
are ab initio values of the dielectric constant 
 for InP, calculated by comparing the Makov-Payne corrections of order L−1 and L−3 with the
coefficients a1 and a3 obtained from the scaling. 
	�L−1� is the same thing calculated from the potential-corrected formation energies. All
energies in eV, dielectric constants in units of the free space dielectric constant 
0.

Defect

Ideal structures Relaxed structures

Ed
� Ed

�,	 
�L−1� 
�L−3� 
	�L−1� Ed
� Ed

�,	 
�L−1� 
�L−3� 
	�L−1�

VP
+1 1.95±0.09 2.03±0.01 77.21 8.37 64.17 1.77±0.14 1.81±0.03 −16.38 4.32 −17.41

VIn
−3 6.52±0.06 5.75±0.78 12.12 −12.86 −14.43 4.95±0.05 4.63±0.52 17.96 −16.91 −39.93

PIn
+2 2.36±0.04 2.04±0.31 15.63 37.37 −14.88 1.07±0.04 0.83±0.27 19.83 17.96 −18.21

InP
−2 4.25±0.08 4.25±0.12 14.33 29.16 46.67 3.85±0.13 4.00±0.31 25.53 30.12 37.69

Pi�P�
+3 4.05±0.07 3.32±0.71 14.22 15.49 −15.83 2.43±0.11 2.24±0.50 18.08 −26.71 −90.00

Ini�P�
+3 3.67±0.08 2.80±0.54 8.18 −15.78 −14.79 1.85±0.04 1.36±0.25 14.18 215.60 −29.86

Zni�P�
+2 1.28±0.01 1.05±0.31 10.57 −22.52 −18.98 0.50±0.02 0.31±0.12 13.58 472.79 −54.67

ZnIn
−1 0.98±0.01 0.91±0.07 9.78 −13.23 −32.65 0.48±0.01 0.47±0.03 16.59 −9.36 117.20

SiP
−1 1.82±0.03 1.85±0.03 10.85 42.10 22.63 1.71±0.04 1.75±0.13 16.65 87.59 8.78

SP
+1 −1.17±0.02 −1.15±0.03 9.24 5.38 16.91 −1.34±0.01 −1.37±0.07 12.28 6.71 39.50

SiIn
+1 0.62±0.01 0.50±0.11 10.81 20.48 −13.90 −0.36±0.03 −0.51±0.11 27.56 8.89 −6.82

Average ±0.05 ±0.27 17.54 8.54 2.27 ±0.05 ±0.21 15.08 71.91 −4.88

Average over both relaxed and unrelaxed structures: ±0.05 ±0.24 16.31 40.23 −1.31

FIG. 2. �Color online� Scaling of the elastic contribution to the
finite size errors in defect formation energies. Formation energies in
the 216 atom shell are plotted vs the inverse of the radius of the
outermost shell of atoms permitted to relax. ZnIn

−1 ���, SiIn
+1 ���,

Ini�P�
+3 ���, PIn

+2 ���, VIn
−3 ���, and InP

−2 ���. Solid �green� and dashed
�red� lines: linear fits with the 1 shell only point omitted and in-
cluded respectively. Dotted �blue� lines: quadratic fits to all points.
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ues are always worse than those using only potential
realignment, and usually worse than even the uncorrected
formation energies. Clearly, even for shallow defect levels,
which closely follow10 the VBE or conduction band edge
�CBE�, �D

� still produces worse formation energies than �D
KS.

C. Makov-Payne corrections

Figure 1�g� shows the first order L−1 Makov-Payne cor-
rections, with �dash-dash-dot, green� and without �dot-dot-
dash, blue� potential realignment. When used together the
two schemes usually produce a large overestimate of the re-
quired correction �see columns 7 and 15 of Table II� almost
as if using both corrections actually makes the same correc-
tion twice. Since the combination does so much worse than
either technique alone there is no point going further with it.
Instead, Figs. 1�h�–1�j� show Makov-Payne corrections only,
with formation energies including both the order L−1 correc-
tions �short dashed, magenta� and the order L−1 plus order
L−3 corrections �dot-dot-dashed, blue�. The order L−1 correc-
tions work well in some cases �such as Ini�P�

+3 when relax-
ations are omitted�, but in most cases they are too large by a
factor of about 1 1

2 to 2 �as also noted by others6,9� so that the
“corrected” formation energies are a little better than the un-
corrected ones. When the order L−3 corrections are added the
correct formation energies are obtained in some cases, such
as VIn

−3, but in other cases, such as PIn
+2, they help but are not

sufficient. For other cases, such as VP
+1, the corrections actu-

ally move the formation energies in the wrong direction.
Table II shows that the corrections are generally more

likely to succeed for unrelaxed formation energies which is

to be expected since the electrostatic monopole terms are not
the only ones to scale as L−1: the elastic errors do too. This
means that even in principle the Makov-Payne corrections
are only useful for nonrelaxed formation energies, which are
rarely the interesting ones. In addition to this, the corrections
also do better for more highly charged defects. This confirms
that one of the problems is that they do not take into account
the various other error terms which depend upon supercell
size but not on charge state. These errors mostly have to do
with the spurious defect level dispersion introduced by the
PBCs. Although the direct contributions of these are expo-
nentially decaying,5 their effects can still be seen in super-
cells on the scale of 10–100 atoms. Indeed the actual band
width can be on the order of, for example, 0.5 and 2 eV in
the 64 atom and 8 atom supercells12 and remain significant
even beyond that. Indirect dispersion effects can also be very
important: for example, in a partially filled, erroneously dis-
persed defect level only the lower part will be filled, leading
to too low a value for Ed

C. Worse happens if the defect level
lies outside the band gap, either because it genuinely does or
because the supercell is too small. This can lead to strong
linear terms in the supercell size errors even for neutral
defects:5 a neutral defect can behave as, say a −1 charged
defect with �to a first approximation� a +1 charged jellium
background. This is not limited to neutral defects: a calcula-
tion for a defect anticipated to be in a +2 charge state �with
a −2 charged jellium� could end up behaving more like a +3
charge defect with a −3 charged jellium. If the defect level
moves outside the bandgap at certain k points only it can lead
to a linear error term which is not even proportional to the
square of an integer charge. Overall, even the leading linear
error term may be very different from that predicted by Ma-

TABLE II. Assessment of correction schemes. Finite size errors �relative to the scaled values� are shown for the 64 atom supercell: �E

is the error in the as-calculated formation energy and �E+1 and �E+1+3 are the errors when Makov-Payne corrections are used to order L−1 and
L−3, respectively. �E+1

LDA is the error when order L−1 corrections are used, calculated with the ab initio dielectric constant evaluated from the
results themselves �see text�. �E+k is the error when defect level dispersion is corrected for in the ionized states of the shallow donors and
acceptors. Columns �E

	 etc. are the same as �E etc. but electrostatic potential realignments added. The �averages are of the absolute error
values ��E�. All energies in eV.

Defect

Ideal structures Relaxed structures

�E �E+1 �E+1+3 �E+1
LDA �E

	 �E+1
	 �E+k �E+k

	 �E �E+1 �E+1+3 �E+1
LDA �E

	 �E+1
	 �E+k �E+k

	

VP
+1 0.11 0.29 0.18 0.22 0.02 0.20 0.19 0.37 0.30 0.34 0.11 0.29

VIn
−3 −1.67 −0.02 −0.51 −0.31 −0.13 1.51 −1.20 0.44 −0.08 0.16 −0.01 1.63

PIn
+2 −0.39 0.35 0.11 0.23 −0.02 0.72 −0.28 0.46 0.23 0.34 0.04 0.78

InP
−2 −0.40 0.33 0.08 0.21 −0.03 0.70 −0.19 0.54 0.30 0.42 0.05 1.16

Pi�P�
+3 −1.41 0.23 −0.28 −0.05 −0.08 1.56 −1.06 0.58 0.05 0.30 −0.03 1.61

Ini�P�
+3 −1.65 −0.01 −0.50 −0.29 −0.21 1.44 −1.25 0.39 3.48 0.11 −0.19 1.45

Zni�P�
+2 −0.72 0.01 −0.16 −0.11 −0.13 0.60 −0.53 0.21 −0.03 0.08 −0.12 0.62

ZnIn
−1 −0.25 −0.07 −0.16 −0.10 −0.04 0.14 0.19 0.40 −0.17 0.02 −0.03 −0.01 0.01 0.19 0.05 0.21

SiP
−1 −0.16 0.02 −0.03 0.00 −0.04 0.14 0.16 0.27 −0.10 0.08 0.03 0.06 −0.03 0.09 0.09 0.5

SP
+1 −0.15 0.03 0.00 −0.02 −0.06 0.12 −0.89 −0.78 −0.14 0.04 0.05 0.03 −0.07 0.12 −1.07 −1.02

SiIn
+1 −0.16 0.02 −0.04 0.02 −0.02 0.16 −0.61 −0.50 −0.07 0.11 0.06 0.15 0.07 0.26 −0.90 −0.83

Average 0.64 0.13 0.19 0.14 0.07 0.66 0.46 0.49 0.47 0.29 0.42 0.18 0.07 0.75 0.53 0.64

Average over both relaxed and unrelaxed structures: 0.56 0.21 0.31 0.16 0.07 0.71 0.50 0.57
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kov and Payne’s corrections. Unfortunately, beyond noting
that things get better on average for larger charge states and
for nonrelaxed calculations there seems to be no a priori
method for determining whether the corrections will make
things better or worse in a specific case. They are thus of
little practical help, since they do not take into account
enough of the specific behavior of individual defects and
materials. Indeed, it seems unlikely that any such highly gen-
eralized model for prediction of finite size error correction
factors will ever fully succeed.

D. Calculating the ab initio dielectric constant

Makov and Payne predicted that the two leading terms in
the errors should be linear and cubic and our results show
that they were correct in that respect. Their “corrected” for-
mation energy takes the form

Ed:MP
C �L� = Ed:MP

� − k1��L�−1 − k3��L�−3, �6�

where � is the dielectric constant, k1=q2� /2, and k3
=2
qQ /3. �q is the charge of the defect, � is the Madelung
constant for the supercell and Q is the quadrupole moment of
the defect.� Comparing this with Eq. �2� we find an=−kn /�.
If we assume that the scheme is correct after all, then, q
being known and Q having been calculated from the charge
density, the only variable is the dielectric constant �. We can
then use the correction scheme together with the scaling re-
sults to derive an ab initio value of �. This can be done twice
for each defect, as shown in Table I. We find a wide scatter in
the results, reflecting the wide variations in the effectiveness
of the corrections. Indeed, the values of � obtained are com-
pletely crazy when order L−3 corrections are used, as these
are much more sensitive to short range effects and other
errors. This again reflects the fact that the situation described
by Makov and Payne was highly idealized and ignores too
many of the details of the charge distribution around specific
defects. Nevertheless, the averaged values � from the order
L−1 corrections are reasonably good. The most physically
correct approach is to use the unrelaxed formation energies
only �with no elastic effects�; indeed the values derived using
relaxed values, third order corrections or Makov-Payne plus
potential realignment make little sense �see Sec. I�. From the
first order nonrelaxed curves we obtain a dielectric constant
of 17.5±19.0. �The error bar is the standard deviation from
the average.� Numerical problems with the VP value have
made it rather unreliable, and very different to the the others.
Omitting it gives the perhaps more consistent value of
11.6±4.1. These values compare to 9.6 in experiment or 10.7
calculated20 using more traditional ab initio DFT-LDA
techniques.21 We thus obtain a fairly reasonable estimate of �
as a free side-effect of performing accurate defect calcula-
tions—an interesting alternative to the traditional calcula-
tions methods. The uncertainty in the value obtained is ob-
viously rather large, but should improve if more defects in
more charge states are included in the average.

The order L−1 Makov-Payne corrections do improve using
this new value for the dielectric constant, see columns 5 and
13 of Table I. However, some individual values still have
errors of up to 0.3–0.4 eV, and there is still no way to know

when the corrections are making things better and when they
are making things worse, so from a practical point of view
the Makov-Payne scheme is still not reliable enough for ac-
curate calculations.

V. THE BANDGAP PROBLEM

We now turn to the band gap problem and the issue of
how to map calculated transfer levels onto the experimental
gap. In practice several alternative—and essentially incom-
patible—methods are normally used.

�1� The extended gap scheme. Align the theoretical and
experimental VBEs and start plotting defect transfer levels
from there, continuing past the theoretical CBE until one
reaches the experimental one. In the section of the thus plot-
ted “band gap” which lies above the theoretical CBE one
automatically includes calculations in which supposedly lo-
calized, defect-bound electrons are in reality located in delo-
calized conduction band states. The properties of the defect
itself �transfer levels and local relaxed structure, etc.� reenter
primarily via hybridization of the conduction band states
with the localized defect states, though this hybridization be-
comes smaller as the supercell size grows.

�2� The scissors scheme. Align both the theoretical VBE
and CBE with their experimental counterparts, performing a
“scissors” operation to stretched out the theoretical gap states
over the experimental gap. The manner in which this scissors
operation should be done is not uniquely defined. A common
option is to place acceptor levels the same distance above the
experimental VBE that they appear above the theoretical
VBE in calculations, and donor levels the same distance be-
low the experimental CBE that they appear below the theo-
retical CBE in calculations. A better alternative is to actually
examine the form and symmetry of the defect states them-
selves, and see whether they hybridize more strongly with
host states near the CBE or with states near the VBE. If they
hybridize most strongly with VBE states then they should be
plotted the calculated distance above the �experimental�
VBE, and if they hybridize most strongly with CBE states
they should be placed the calculated distance below the
CBE.

�3� The reference level scheme. The basis of this scheme
is rather different: the transfer level for the defect of interest
is calculated, together with that of a similar reference defect
for which the experimental value of the transfer level is well
known, both done to the same level of accuracy. The differ-
ence between the experimental and calculated levels of the
known defect is subtracted from the calculated value of the
new defect, so that the new level is only found relative to the
old one. This idea is not without practical merit, but is very
empirical. Its accuracy depends critically upon the choice of
an appropriate reference defect, which must be as similar to
the new one as possible, so it will not be discussed further
here. However, it has an occasionally used ab initio variant,
which will be discussed.

�4� The charged bulk reference scheme. The reference
state is not that of another defect, but is either the VBE or the
CBE, meaning that a charged bulk total energy appears in
Eq. �1�, rather than a neutral one. In principle this provides
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an alternative route around the band gap problem. �Details
are given below.�

Obviously, none of these schemes is fully correct, since
the LDA/GGA bandgap problem is a fundamental one, but
the important practical question of which approach comes
closer to giving the correct physical picture remains unan-
swered. In principle, it can be answered by examining vari-
ous experimentally well known defect levels. The exact lo-
cation of most native defect levels is rather hard to measure
to a sufficiently high accuracy to answer this question, but
many simple donor and acceptor levels are known very ac-
curately. We will use the 0/� acceptor level of ZnIn, which in
experiment lies 0.035 eV from the VBE, and the �/0 donor
levels of SP and SiIn, which experiment finds about 0.006 eV
from the CBE. We will also add in the 0/� transfer level of
SiP, which would be a simple acceptor if SiIn had not been
the more stable site for Si in InP. This gives us an example of
a donor and an acceptor on each sublattice, so that all bond-
ing and band hybridization possibilities are represented. Un-
fortunately, calculations of these levels in finite sized super-
cells in the 100–200 atom range have never produced a clear
answer to the question, so we will use finite size scaling to
correct for the supercell approximation errors. The results are

shown in Fig. 3�a� using as calculated values, �c� adding in
potential corrections, and �e� using dispersion corrections.
�Van der Walle and Neugebauer10 suggested that dispersion
corrections should still be correct for shallow transfer levels.�
The results using as calculated transfer levels and potential
corrected ones are very similar. The dispersion corrections,
on the other hand, are clearly completely incorrect: they
place both acceptor and donor levels in the midgap for most
practical supercell sizes, whether the potential corrections are
added �not shown� or omitted �as here�. Meanwhile, in Figs.
3�b�, 3�d�, and 3�f� we also show the second donor/acceptor
levels ZnIn

−/−2, SP
+2/+, etc., calculated using the same correction

schemes. Since these levels are never observed experimen-
tally they must lie outside the band gap. Hence the VBE
should lie between the double donor levels �right panels� and
the single acceptor levels �left panels�. Similarly the CBE
should lie between the single donor and double acceptor lev-
els. In practice, these pairs of levels more or less coincide,
doubtless a result of the remaining limitations in the use of
DFT-LDA for semiconductor defects. Fortunately this still
leaves us with a clear view of how to treat the band gap
problem.

In the 64 atom cell the donor �and double acceptor� levels
lie roughly the experimental band gap �1.3 eV� above the

FIG. 3. �Color online� Scaling of transfer levels for simple donors and acceptors calculated using �a� & �b� neutral bulk as reference, with
no corrections. �c� & �d� neutral bulk reference with potential corrections. �e� & �f� neutral bulk reference with dispersion corrections. �g� &
�h� charged bulk as reference, with no corrections. Left panels: the dopant levels themselves. Right panels: the double donor or double
acceptor levels, which should lie outside the bandgap. Using LDA: SP

+/0 and SP
+2/+ ��, green�, SiIn

+/0 and SiIn
+2/+ ��, red�, SiP

0/− and SiP
−/−2 ��,

blue�, ZnIn
0/− and ZnIn

−/−2 ��, pink�. Using GGA: SP
+/0 ��, purple� and ZnIn

0/− ��, brown�. In �g� & �h� the smaller symbols with dashed lines
show the acceptor-type levels relative to the experimental CBE rather than the LDA one. On all panels: the dotted lines are �in order of
increasing energy� the VBE and CBE from GGA �panel �a��, LDA, and experiment. The error bars shown have been constructed as described
in Sec. III though the dotted lines are omitted for clarity.
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VBE, while the acceptor �and double donor� levels lie on
average a little below the VBE. However, coming to the
larger cells the donor levels fall and the acceptor levels rise.
Finite size scaling places the acceptor levels ZnIn

0/− and SiP
0/−

0.03 and 0.01 eV above the VBE, respectively, in rather
good agreement with experiment. The single donor �and
double acceptor� levels all scale to the theoretical CBE.22 To
be more specific, transfer levels calculated using LDA scale
to the LDA band edges, while the ZnIn

0/− and SP
+/0 transfer

levels calculated using the Perdew-Wang GGA �Ref. 23�
scale to the edges of the GGA band gap—Fig. 3�a�. �The
GGA CBE lies 0.2 eV below the LDA one when the lattice
parameter has been optimized.�

Hence, scheme 1, the extended gap scheme, is seen to be
the most appropriate when only reporting uncorrected results
from supercells of about 50–100 atoms. However, when the
finite size errors are removed �by scaling or by some other
technique� it becomes clear that the scissors scheme, scheme
2, is physically far more correct. Unscaled LDA or GGA
results in supercells over a few 1000 atoms would also be
best reported using the scissors scheme. For intermediate
�100–1000 atom� supercells some kind of hybrid approach is
required. The result also indicates why the controversy has
lasted so long: ultimately the scissors scheme is correct, but
this only shows up for very large supercells or with scaling.24

We now return to scheme �4�, the charged bulk reference.
This amounts to replacing the terms −ET

C�no defect� and
−q�F in Eq. �1� by the term −ET

C�no defectq�, which is the
total energy of the bulk supercell C with −q extra electrons
and neutralizing jellium. Figures 3�g� and 3�h� show the
transfer levels calculated like this, with no correction terms.
The donor levels behave in the same way as using Eq. �1� in
Fig. 3�a�, but the acceptor levels are less straightforward.
Using a charged bulk reference the levels come out relative
to the CBE, rather than the VBE: they implicitly include the
bandgap, which must be subtracted off again to place them
on the same overall scale as the donor levels. This gives a
“choice” for the value for the bandgap to subtract, which is
how the potential route around the band gap problem enters.
Namely, if the 0/� transfer level emerges as, say, −0.5 eV,
one could place it 0.5 eV below the experimental CBE, thus
plotting the transfer levels over the experimental bandgap.
(Small symbols and dashed scaling curves in Figs. 3�g� and
3�h�.) For the single acceptor levels this clearly does not
work: although they land accidentally close to the VBE for
smaller supercells they actually scale to the theoretical CBE,
which is completely wrong. Instead, they should be placed
below the theoretically CBE �large symbols, solid curves�,
where they scale to the VBE. Unfortunately the opposite is
true for the double acceptor levels. These work out moder-
ately well if plotted relative to the experimental CBE—lying
outside the theoretical band gap, even if still inside the ex-
perimental one—but using the theoretical CBE �as required
for the single acceptors� they lie inside the theoretical band
gap, disagreeing with experiment. Hence using a charged
bulk total energy as the reference for charged defect calcula-
tions is not even internally consistent and the scheme is thus
fundamentally incorrect.

VI. CONCLUSIONS

In this paper we have shown that finite size errors in the
supercell approximation scale with the linear dimension and
with the volume of the supercell, and that finite size scaling
the results from a series of supercells removes the supercell
approximation errors, leaving accurate information on iso-
lated semiconductor defects, without the need for correc-
tions. We also obtain error bars defining the uncertainly on
the results obtained, and as far as we are aware this is the
only method which is able to remove these errors in a con-
trolled manner with defined uncertainty. We have demon-
strated this using a variety of different types of defects with
charge states ranging from −3 to +3 and find that it is pos-
sible to reduce formation energy errors from the 0.1–2 or so
eV range of practical supercells down to the 0.01–0.1 eV
range or below—doubtless much lower if still larger super-
cells are used. By construction, errors on this scale also occur
if only the 8, 64, and 216 atom supercells are used.

We then used the scaled results for the first full reliability
test of three correction schemes. We found that dispersion
corrections are incorrect and Makov-Payne corrections are
poor �with both the experimental and LDA dielectric con-
stants�, though they did allow us to obtain a reasonable ab
initio LDA dielectric constant of �=11.6±4.1 for InP. On the
other hand, the potential realignment scheme was found to
be remarkably successful, removing much of the electrostatic
defect-defect error as well, to leave average residual errors of
about 0.1 eV, from single calculations with supercells in the
64–512 atom range.

This obviously raises the question of why the potential
re-alignment scheme is so successful, when it does not set
out to correct defect-image interaction errors at all. The fact
that it produces similar �but more reliable� corrections to the
Makov-Payne scheme suggests that it is some how dealing
with the electrostatic errors anyway. We noted in Sec. IV A
that the scheme assumes that the real-space potential at some
point in the cell far from the defect is bulklike, even though
for practical cell sizes it is not bulklike at all. The resulting
additional shift in this local real-space potential reflects the
effects of the electrostatic defect-image interactions. Doing
the potential realignment in this way therefore fails to prop-
erly correct the mismatch in the zeros of the energy scales
between the bulk and defect cells, but the “error” in the
realignment more or less corrects for the electrostatic errors
arising from the PBCs.

Finally, we have given the long awaited answer to the
dilemma of how best to map LDA and GGA calculated de-
fect transfer levels onto the experimental gap, and indicated
why the issue was previously so hard to settle. The key result
is that the scissors method is physically more correct, though
the extended gap scheme is best when reporting results from
single supercells on the 1–200 atom scale without finite size
corrections. For uncorrected results from supercells over a
few 1000 atoms the scissors method is best, with a hybrid
method needed in between. The best, of course, is to use the
scissors scheme, with either scaled or corrected results, re-
gardless of supercell size. The apparent success of the essen-
tially incorrect extended gap scheme for uncorrected results
in manageably sized supercells is the basic reason for the
debate lasting so long.
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This leads to another issue which is also apparent from
our results. It is very dangerous to report calculations from
single supercells without trying to estimate the errors con-
tained. Quantitatively these can be �1–2 eV or more, but
we have cases here where conclusions are even qualitatively
wrong in supercells up to and even including the 512 atom
cell. For example,25 comparing these results for PIn

+2 with
those5 for PIn

+0 we find that even at the CBE, the +2 charge
state appears more stable than the +0 in all four supercells.
The fact that it is actually 0.19 eV less stable only emerges
when the finite size errors are removed, either by scaling or
�leaving residual errors from 0.05–0.13 eV� by using poten-
tial realignment. Similarly, at the VBE, VIn

−3 and Ini�P�
+3 are

more stable than VIn
+0 and Ini�P�

+0 , respectively, in both the 64
and 216 atom supercells. The correct stability order only
appears in the 512 atom cell �neutrals more stable by 0.21
and 0.16 eV, respectively�, and the correct order of magni-
tude for the difference �0.68 and 1.17 eV� is only obtained
by scaling. Another striking example is that, according to
LDA in cells �512 atoms, p-type Zn-doped InP—a material
upon which much of current optoelectronics depends—
should not be p type at all. For the roughly stoichiometric
conditions of, say, Czochralski growth, LDA in the 64 and
216 atom cells places Zn not as the shallow acceptor ZnIn but
as the interstitial Zni�P�, where it is a deep double donor.
Even in the 512 atom cell the two are degenerate, suggesting
at best semi-insulating material. According to this Zn is only
an acceptor for InP grown under strongly nonequilibrium
conditions, such as with molecular beam epitaxy. However,
Zn is a p type dopant, even grown from the melt, and this
fact can be predicted using LDA, but only for supercells of
the order of 1000 s of atoms, or if the supercell size errors
are removed—by scaling or otherwise. Doing this using po-
tential realignment works for all these examples: even in the
64 atom supercell reasonable results can be obtained. How-
ever, caution should still be used: First, for our examples it
worked much better for the formation energies than for the
shallow dopant transfer levels. Secondly, potential realign-
ment makes PIn

+0 �correctly� more stable than PIn
+2 at the CBE

in all but the 8 atom supercell, but if those corrected results
are then scaled the wrong answer returns, with PIn

+2 more

stable than PIn
+0 because of the large error bars found when

scaling potential realigned energies.
In short, it is essential, to estimate and report the finite

size errors for each specific case when reporting supercell
defect calculations. This is often omitted, or is only done
using the unreliable Makov-Payne scheme. When it is done
this is usually by doing most calculations in a cell of, say,
50–200 atoms, and then repeating a few of them in a slightly
larger cell. If the calculated results do not change much then
they are considered converged. However, even this should be
done with extreme caution. Even with only a linear contri-
bution, the finite size errors in the 64 atom supercell are three
times the difference between the 64 and 216 atom cell ener-
gies, the 216 atom cell errors are still twice this estimate.
Even the errors in the 512 atom cell are three times the
difference between the 216 and 512 atom energies.

So, how should finite size errors within the supercell ap-
proximation be treated? Ideally, using finite size scaling of
otherwise uncorrected energies. This is, of course, costly in
both human and computer time. The best alternative is sim-
ply to use potential realignment in as large a supercell as
time and resources permit. However, one should be aware
that �a� this does not help the elastic errors, �b� potential
realignment should not be combined with finite size scaling,
and �c� there is no way to estimate the remaining errors or
the reliability of the results. For our examples, the average
errors using this method are �0.10 eV, but with some ex-
amples up to 0.21 eV, and nothing to say that much larger
errors will never occur. If the conclusions being drawn from
a calculation are not adversely affected by uncontrolled er-
rors of 0.1–0.2+ eV then this method is reasonably good.
Otherwise, the only truly reliable method of controlling the
errors in the supercell approximation, and defining the uncer-
tainly in the results, is finite size scaling.
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