23 research outputs found

    Chronobiology, sleep-related risk factors and light therapy in perinatal depression : the "Life-ON" project

    Get PDF
    Perinatal depression (PND) has an overall estimated prevalence of roughly 12\ua0%. Untreated PND has significant negative consequences not only on the health of the mothers, but also on the physical, emotional and cognitive development of their children. No certain risk factors are known to predict PND and no completely safe drug treatments are available during pregnancy and breastfeeding. Sleep and depression are strongly related to each other because of a solid reciprocal causal relationship. Bright light therapy (BLT) is a well-tested and safe treatment, effective in both depression and circadian/sleep disorders

    Effects of light on human circadian rhythms, sleep and mood

    No full text
    Humans live in a 24-hour environment, in which light and darkness follow a diurnal pattern. Our circadian pacemaker, the suprachiasmatic nuclei (SCN) in the hypothalamus, is entrained to the 24-hour solar day via a pathway from the retina and synchronises our internal biological rhythms. Rhythmic variations in ambient illumination impact behaviours such as rest during sleep and activity during wakefulness as well as their underlying biological processes. Rather recently, the availability of artificial light has substantially changed the light environment, especially during evening and night hours. This may increase the risk of developing circadian rhythm sleep-wake disorders (CRSWD), which are often caused by a misalignment of endogenous circadian rhythms and external light-dark cycles. While the exact relationship between the availability of artificial light and CRSWD remains to be established, nocturnal light has been shown to alter circadian rhythms and sleep in humans. On the other hand, light can also be used as an effective and noninvasive therapeutic option with little to no side effects, to improve sleep,mood and general well-being. This article reviews our current state of knowledge regarding the effects of light on circadian rhythms, sleep, and mood

    Sleep and circadian phenotype in people without cone-mediated vision: a case series of five CNGB3 and two CNGA3 patients

    No full text
    Light exposure entrains the circadian clock through the intrinsically photosensitive retinal ganglion cells, which sense light in addition to the cone and rod photoreceptors. In congenital achromatopsia (prevalence 1:30–50 000), the cone system is non-functional, resulting in severe light avoidance and photophobia at daytime light levels. How this condition affects circadian and neuroendocrine responses to light is not known. In this case series of genetically confirmed congenital achromatopsia patients (n = 7; age 30–72 years; 6 women, 1 male), we examined survey-assessed sleep/circadian phenotype, self-reported visual function, sensitivity to light and use of spectral filters that modify chronic light exposure. In all but one patient, we measured rest-activity cycles using actigraphy over 3 weeks and measured the melatonin phase angle of entrainment using the dim-light melatonin onset. Owing to their light sensitivity, congenital achromatopsia patients used filters to reduce retinal illumination. Thus, congenital achromatopsia patients experienced severely attenuated light exposure. In aggregate, we found a tendency to a late chronotype. We found regular rest-activity patterns in all patients and normal phase angles of entrainment in participants with a measurable dim-light melatonin onset. Our results reveal that a functional cone system and exposure to daytime light intensities are not necessary for regular behavioural and hormonal entrainment, even when survey-assessed sleep and circadian phenotype indicated a tendency for a late chronotype and sleep problems in our congenital achromatopsia cohort

    Polysomnographic features of pregnancy : A systematic review

    No full text
    Symptoms of sleep disturbances are common among pregnant women and generally worsen across gestation. Pregnancy-related sleep disorders are not only associated with a poor quality of life of the affected mothers, but also with adverse perinatal outcomes, including perinatal depression, gestational diabetes, preeclampsia, and preterm birth. The current knowledge about the impact of sleep disorders during pregnancy largely derives from the results of sleep surveys conducted in various populations. However, the number of studies examining changes in objective sleep variables during pregnancy via polysomnography has progressively increased in recent years. Here we systematically reviewed the polysomnographic studies available in the literature with the aim to describe the sleep pattern and to identify possible markers of sleep disruption in pregnant women. Based on our analysis, subjective worsening of sleep quality across gestation is related to objective changes in sleep macrostructure, which become particularly evident in the third trimester. Pregnancy per se does not represent an independent risk factor for developing major polysomnography-assessed sleep disorders in otherwise healthy women. However, in women presenting predisposing factors, such as obesity or hypertension, physiological changes occurring during pregnancy may contribute to the onset of pathological conditions, especially sleep-disordered breathing, which must be carefully considered

    Differential impact in young and older individuals of blue-enriched white light on circadian physiology and alertness during sustained wakefulness

    Full text link
    We tested the effect of different lights as a countermeasure against sleep-loss decrements in alertness, melatonin and cortisol profile, skin temperature and wrist motor activity in healthy young and older volunteers under extendend wakefulness. 26 young [mean (SE): 25.0 (0.6) y)] and 12 older participants [(mean (SE): 63.6 (1.3) y)] underwent 40-h of sustained wakefulness during 3 balanced crossover segments, once under dim light (DL: 8 lx), and once under either white light (WL: 250 lx, 2,800 K) or blue-enriched white light (BL: 250 lx, 9,000 K) exposure. Subjective sleepiness, melatonin and cortisol were assessed hourly. Skin temperature and wrist motor activity were continuously recorded. WL and BL induced an alerting response in both the older (p = 0.005) and the young participants (p = 0.021). The evening rise in melatonin was attentuated under both WL and BL only in the young. Cortisol levels were increased and activity levels decreased in the older compared to the young only under BL (p = 0.0003). Compared to the young, both proximal and distal skin temperatures were lower in older participants under all lighting conditions. Thus the color temperature of normal intensity lighting may have differential effects on circadian physiology in young and older individuals. © 2017 The Author(s)

    Erratum to: The sleep registry. An international online survey and cognitive test assessment tool and database for multivariate sleep and insomnia phenotyping (Sleep Medicine (2013) 14S (e293–e294))

    No full text
    The authors would like to inform you that the name of the seventh author was incorrectly listed as “L. Hartescu” in their published article. Dr Hartescu's affiliation to Loughborough University was also missed. We apologise for these errors, which have been corrected above

    Sleep spindle characteristics and arousability from nighttime transportation noise exposure in healthy young and older individuals

    No full text
    Abstract Study Objectives Nighttime transportation noise elicits awakenings, sleep-stage changes, and electroencephalographic (EEG) arousals. Here, we investigated the potential sleep-protective role of sleep spindles on noise-induced sleep alterations. Methods Twenty-six young (19-33 years, 12 women) and 18 older (52-70 years, 9 women) healthy volunteers underwent a repeated measures polysomnographic 6-day laboratory study. Participants spent one noise-free baseline night, followed by four transportation noise-exposure nights (road traffic or railway noise; continuous or intermittent: average sound levels of 45 dB, maximum sound levels of 50-62 dB), and one noise-free recovery night. Sleep stages were scored manually and fast sleep spindle characteristics were quantified automatically using an individual band-pass filtering approach. Results Nighttime exposure to transportation noise significantly increased sleep EEG arousal indices. Sleep structure and continuity were not differentially affected by noise exposure in individuals with a low versus a high spindle rate. Spindle rates showed an age-related decline along with more noise-induced sleep alterations. All-night spindle rates did not predict EEG arousal or awakening probability from single railway noise events. Spindle characteristics were affected in noise-exposure nights compared to noise-free nights: we observed a reduction of the spindle amplitude in both age groups and of the spindle rate in the older group. Conclusions We have evidence that spindle rate is more likely to represent a trait phenomenon, which does not seem to play a sleep-protective role in nighttime transportation noise-induced sleep disruptions. However, the marked reduction in spindle amplitude is most likely a sensitive index for noise-induced sleep alterations
    corecore