3,411 research outputs found

    A differential equation for specific catchment area

    Get PDF
    Analysis of the behavior of specific catchment area in a stream tube leads to a simple nonlinear differential equation describing the rate of change of specific catchment area along a flow path. The differential equation can be integrated numerically along a flow path to calculate specific catchment area at any point on a digital elevation model without requiring the usual estimates of catchment area and width. The method is more computationally intensive than most grid-based methods for calculating specific catchment area, so its main application is as a reference against which conventional methods can be tested. This is the first method that provides a benchmark for more approximate methods in complex terrain with both convergent and divergent areas, not just on simple surfaces for which analytical solutions are known. Preliminary evaluation of the D8, M8, digital elevation model networks (DEMON), and D methods indicate that the D method is the best of those methods for estimating specific catchment area, but all methods overestimate in divergent terrain

    H.E.S.S. observations of the Large Magellanic Cloud

    Full text link
    The Large Magellanic Cloud (LMC) is a satellite galaxy of the Milky Way at a distance of approximately 48 kpc. Despite its distance it harbours several interesting targets for TeV gamma-ray observations. The composite supernova remnant N 157B/PSR J05367-6910 was discovered by H.E.S.S. being an emitter of very high energy (VHE) gamma-rays. It is the most distant pulsar wind nebula ever detected in VHE gamma-rays. Another very exciting target is SN 1987A, the remnant of the most recent supernova explosion that occurred in the neighbourhood of the Milky Way. Models for Cosmic Ray acceleration in this remnant predict gamma-ray emission at a level detectable by H.E.S.S. but this has not been detected so far. Fermi/LAT discovered diffuse high energy (HE) gamma-ray emission from the general direction of the massive star forming region 30 Doradus but no clear evidence for emission from either N 157B or SN 1987A has been published. The part of the LMC containing these objects has been observed regularly with the H.E.S.S. telescopes since 2003. With deep observations carried out in 2010 a very good exposure of this part of the sky has been obtained. The current status of the H.E.S.S. LMC observations is reported along with new results on N 157B and SN 1987A.Comment: 4 pages, 3 figures, proceedings of the 32nd Internatioal Cosmic Ray Conference, Beijing 201

    Spin current propagation through ultra-thin insulating layers in multilayered ferromagnetic systems

    Get PDF
    Spin current pumping from a ferromagnet through an insulating layer into a heavy metal was studied in a CoFeB/SiO2/Pt system in relation to the thickness and interfacial structure of the insulating layer. The propagation of spin current from the ferromagnet into the heavy metal falls rapidly with sub-nanometer thicknesses of SiO2 and is suppressed beyond a nominal thickness of 2 nm. Structural analysis shows that SiO2 only forms a complete barrier layer beyond around 2 nm, indicating that the presence of a discontinuous insulating barrier, and not tunneling or diffusion, explains the main observations of spin-pumping with thin insulating layers

    3D polymer structures with variable permittivity at terahertz frequencies

    Get PDF
    Titanium dioxide (TiO2) powder has been blended with polydimethylsiloxane (PDMS) to manufacture a composite polymer with variable permittivity. Vector network analyser measurements taken between 0.75-1.1 THz quantify the relationship between TiO2 concentration and complex permittivity of the resultant material. Complex 3D structures have been produced with a casting process. Applications for the tunable-permittivity polymer include dielectric regions in photonic and plasmonic devices operating at terahertz frequencies as well as single pixel imaging systems
    • …
    corecore