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[1] Analysis of the behavior of specific catchment area in a stream tube leads to a simple
nonlinear differential equation describing the rate of change of specific catchment area
along a flow path. The differential equation can be integrated numerically along a
flow path to calculate specific catchment area at any point on a digital elevation model
without requiring the usual estimates of catchment area and width. The method is
more computationally intensive than most grid‐based methods for calculating specific
catchment area, so its main application is as a reference against which conventional
methods can be tested. This is the first method that provides a benchmark for more
approximate methods in complex terrain with both convergent and divergent areas, not just
on simple surfaces for which analytical solutions are known. Preliminary evaluation of
the D8, M8, digital elevation model networks (DEMON), and D∞ methods indicate that
the D∞ method is the best of those methods for estimating specific catchment area, but
all methods overestimate in divergent terrain.
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1. Introduction

[2] Specific catchment area a is one of the most commonly
used hydrological terrain attributes. On its own it can be used
as a surrogate for discharge per unit flow width, and it is
commonly used in combination with slope S as either the
topographic wetness index TWI = ln (a/S) [Beven and
Kirkby, 1979; Quinn et al., 1991, 1995] or as the stream
power index w = aS [Moore and Burch, 1986; Moore and
Wilson, 1992]. These indices have many applications in
predicting patterns of saturation [Beven and Kirkby, 1979;
Güntner et al., 2004], saturated subsurface flow [Mishra
et al., 2008], channel initiation [Dietrich et al., 1993;
McNamara et al., 2006], erosive power [Moore and Wilson,
1992], and soil properties [McKenzie et al., 2000; Gessler
et al., 1995] and as indices of topographic position for
mapping landforms [Ventura and Irvin, 2000] and vegetation
distribution [Mackey et al., 2000].
[3] In spite of its wide use and a general consensus on its

meaning, specific catchment area does not seem to have
been clearly defined, perhaps because there has been no
need for the precision of a definition in the applications to
date. The mathematical treatment presented in this paper
provides a motivation for a clear definition and examination
of the assumptions implicit in the definition.
[4] We define specific catchment area a at a point as

a ¼ lim
w!0

A

w
; ð1Þ

with A being the area of land surface, as vertically projected
onto the horizontal plane, between two slope lines that
originate at a common hilltop, bounded at the lower end by
a contour segment of length w as shown in Figure 1. While,
in general, the upper end of area A can be bounded by
multiple hilltops and drainage divides, we restrict attention
in our analysis to the case of a single hilltop. As noted by
Maxwell [1870], each point in the land surface can be
essentially allocated in this way to a unique hilltop. Points
on slope lines originating from saddle points are at the
conjunction of slope lines from two neighboring hilltops and
require special treatment. Area A is called the contributing
or catchment area or sometimes total catchment area to
distinguish it from specific catchment area [Gruber and
Peckham, 2009]. An equivalent definition is

a ¼ @A

@k
; ð2Þ

where k is distance along the contour line from an arbitrary
starting point; this will be explored with more rigor later in
the paper.
[5] This definition is stated in terms of slope lines [Cayley,

1859], or lines of slope [Maxwell, 1870], that follow the
direction of steepest descent across the land surface rather
than flow lines that follow the direction of water flow. This is
in keeping with the use of specific catchment area as a
topographic attribute with hydrological and other applica-
tions. The connection between specific catchment area and
surface water flow is strong wherever water flow is deter-
mined primarily by the slope gradient but breaks down where
other factors, such as momentum and pressure gradients,
become significant. These other factors are important in
concentrated flow such as channels and in areas that are flat,
or very nearly so, but are usually insignificant for diffuse
surface flow and shallow subsurface flow on hillslopes.
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Specific catchment area is therefore of value as a hydrolog-
ical index on hillslopes but less so in nearly flat areas and
channels.
[6] The definition assumes the existence of slope lines

following the direction of steepest descent that vary in a
continuous fashion along well‐defined elevation contours.
This implies, at the minimum, a continuous land surface
with continuous first derivatives of elevation and nonzero
slope. This is, of course, violated at cliffs and overhangs, in
flat areas, and at sharp ridges and valleys where slope lines
with different origins can coalesce. However, away from
such areas it is reasonable to assume a high degree of sur-
face continuity, and it is in these areas where specific
catchment area is a useful measure. Indeed, the main result
of this paper is couched in terms of an integral of second
derivatives, so it is convenient to assume for this analysis that
the land surface has piecewise continuous second deriva-
tives. This is consistent with the use of biquadratic splines to
interpolate across a regular grid digital elevation model
(DEM), as adopted in section 6.
[7] Calculating specific catchment area from regular grid

DEMs remains a challenge, as witnessed by the number of
algorithms that have been developed since the early 1980s:
(1) D8 steepest descent single downslope flow direction
[O’Callaghan and Mark, 1984]; (2) Rho8 randomized ver-
sion of D8, designed to reduce the parallel flow path
artifacts of D8 [Fairfield and Leymarie, 1991]; (3) slope‐
weighted multiple downslope direction methods [Freeman,
1991; Quinn et al., 1991, 1995], collectively called M8 here;
(4) digital elevation model networks (DEMON) flow tube
method [Costa‐Cabral and Burges, 1994], based on the
aspect driven method of Lea [1992]; (5) D∞ continuous
single‐flow direction with flow proportioned among adja-
cent neighboring grid cells [Tarboton, 1997]; (6) D8‐LTD
and D8‐LAD, modified D8 methods that reduce the devia-
tion between the ideal flow path and the single‐flow direction

path [Orlandini et al., 2003]; and (7) MD∞, a slope‐weighted
multiple‐direction modification of Tarboton’s D∞ method
[Seibert and McGlynn, 2007].
[8] The diversity of methods have arisen in response to

the difficulty in reconciling the curved paths taken by water
flowing across complex topography with the rectilinear
structure of a grid DEM. Flow paths diverge and converge
in different parts of the landscape and are rarely aligned with
the orientation of the grid cells. The different methods
encompass a range of compromises between simplicity and
accuracy.
[9] The deficiencies in the two simplest methods, D8 and

M8, have been clearly identified and discussed by Costa‐
Cabral and Burges [1994] and Tarboton [1997]. In sum-
mary, the D8 method cannot disperse flow in divergent
terrain, cannot follow aspect angles that are not multiples of
45°, and has significant errors for noncardinal flow direc-
tions, while the M8 method produces excessive dispersion
and introduces dependencies between cells that contradict
actual flow directions. The modified D8‐LTD method
[Orlandini et al., 2003] substantially improves the repre-
sentation of flow paths while retaining the nondispersive
nature of the D8 method. The DEMON method [Costa‐
Cabral and Burges, 1994] is one of the more accurate
methods because it explicitly traces flow paths, but this
comes at a high computational cost. The D∞ method
[Tarboton, 1997] also appears to be quite accurate and is
computationally efficient. Both DEMON and D∞ methods
are still effectively single–flow direction algorithms at the
scale of a single grid cell, so neither is well adapted to
strongly divergent terrain. The M8 and MD∞ methods can
disperse flow to several adjacent grid cells in strongly
diverging terrain such as hilltops and sharp ridges.
[10] Catchment areas and flow widths can also be deter-

mined from contour data if slope lines between contours can
be robustly determined. The methods of Dawes and Short
[1994], building upon previous work by O’Loughlin
[1986] and Moore and Grayson [1991], provided a rea-
sonably robust approach, but Moretti and Orlandini [2008]
demonstrated the first comprehensive solution to this prob-
lem. One key to the success of Moretti and Orlandini’s
approach was the construction of additional skeleton lines
that capture the ridges and valleys implied by the curvature
of the contour lines. This parallels the contour interpolation
method of Hutchinson [1988] that employs automatically
derived curvilinear ridge lines and streamlines to address
this issue, as described by Hutchinson and Gallant [2000].
Having constructed a network of slope lines and contour
lines, catchment areas can be defined for each contour
segment and specific catchment area calculated using (1)
without the limit due to the finite width.
[11] All existing methods, whether working from grids or

from contours, compute specific catchment area by calcu-
lating A and w separately and then calculating a mean or
effective a as the ratio in (1) without the limit. A number of
different methods have been proposed for determining w on
a grid, generally without a sound theoretical basis [Chirico
et al., 2005]. Errors in the estimation of both A and w will
contribute to errors in estimates of a.
[12] Evaluating the accuracy of specific catchment area

algorithms requires knowledge of exact a, or A and w, so
that the accuracy of the method can be established. To date,

Figure 1. An idealized stream tube originating at a hilltop
and terminating at a contour on a hillslope. The average spe-
cific catchment area a along the contour segment is the ratio
of contributing area A to flow width w.
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these comparisons have used simple mathematical surfaces,
namely, convergent and divergent cones and inclined
planes, where a can be determined from first principles. The
accuracy of the methods on complex surfaces cannot be
established, and the usual approach is to make comparisons
between methods coupled with an intuitive expectation of
what the results should look like. The one exception to this
is the detailed comparison by Orlandini and Moretti [2009]
of surface flow paths and catchment areas from several grid‐
based methods using a detailed contour and flow line net-
work [Moretti and Orlandini, 2008] as a reference. That
study was conducted in steep terrain where the contour‐
based network provided a good representation of the surface
flow pathways. It showed that mildly dispersive methods
such as D∞ provided better spatial patterns of contributing
area than nondispersive methods, particularly in divergent
terrain, but the path‐based nondispersive methods such as
D8‐LTD provided a better representation of flow paths
across the surface.
[13] This paper derives a differential equation for a that

can be solved numerically to yield specific catchment area at
any point on any smooth surface. The equation yields a
directly without requiring separate calculation of A and w.
This approach does not at this stage provide an efficient
method for calculating specific catchment area for a whole
DEM, but it does provide for the first time an analytical
benchmark against which other methods can be tested on

complex surfaces. The software and data used in this paper
can be obtained from the first author.

2. Specific Catchment Area Derived
From a Stream Tube

[14] A stream tube is the tract of land defined by two
adjacent slope lines that delivers water to a channel
[Onstad and Brakensiek, 1968]. A third slope line can be
chosen between the two lines defining the stream tube,
along which specific catchment area can be estimated. It
should be noted that this slope line can only be an
approximation to the “center” of the flow tube since the
horizontal separations between different slope lines can
vary as they descend down the hillslope. At any point
along this third slope line, a contour line can be con-
structed to the edges of the stream tube, and specific
catchment area can be calculated as a = A/w using the area
A above the contour line and length w of the contour line.
[15] Figure 2 shows such a stream tube derived from a

20 m resolution DEM of a section of the Brindabella ranges
bordering the Australian Capital Territory in southeastern
Australia (35°21′S, 148°49′E) [Moore et al., 1993]. The
DEM was produced by the ANUDEM program [Hutchinson,
1988, 1989, 2006] from 1:25,000 scale contours and stream-
lines. This landscape is dominated by steep slopes with nar-
row ridges and valleys. A starting point on a hillslope was

Figure 2. A section of the Brindabella 20 m resolution DEM showing contours at 10 m intervals and
slope lines forming a stream tube flowing from a hilltop on the left to a valley on the right. The labeled
tick marks along the central slope line show distance from the hilltop in meters. The starting points for
construction of the lines are shown as dots on the three lines.

GALLANT AND HUTCHINSON: A DIFFERENTIAL EQUATION FOR SPECIFIC CATCHMENT W05535W05535

3 of 14



chosen for the “third” line, and two points about 20 m to
either side of the first point define the starting points for the
two lines defining the stream tube. Lines were constructed
(using methods described in section 5) upslope from the
starting points until they reached the hilltop, then the lines
were extended downward until they converged within the
valley. For each point on the third line, the elevation was
calculated and points were identified on the left and right
line at the same elevation. The contour segment was
approximated as straight lines between the third line and the
two side lines, from which w is readily calculated. The
quadrilateral elements between successive contour lines on
either side of the third line define incremental areas that are
accumulated from the top of the slope lines to determine
contributing area A.
[16] Figure 3 shows the width w, contributing area A, and

specific catchment area a for the stream tube as a function of
flow length down the hill. The point chosen to anchor the
slope lines is located on the nearly planar hillslope at a flow
length of 473 m from the hilltop. This method estimates a
effectively where the width is sufficiently large but not
where the width becomes very small. The construction of
slope lines by numerical integration of flow direction
(aspect) causes an accumulation of positional error in the
slope lines as they progress further upslope or downslope
from the starting point. Eventually, the errors in position
cause the constructed lines to cross over each other and the
stream tube width loses accuracy (this is a purely numerical
artifact: the actual slope lines of course cannot cross or

merge as long as first derivatives are continuous). In this
example, the width is considered to be sufficiently accurate
while it remains above 1 m. Note that “accurate” here is
meant to imply not an accurate representation of flow
lines on the real surface but an accurate construction of
slope lines on the smooth surface defined by the DEM; see
section 5 for further discussion on this point.
[17] In the portion where width is greater than 1 m (from

about 190 to 640 m flow length), the specific catchment area
increases, decreases slightly, and then increases again.
These three segments correspond to (1) the divergent (190–
220 m), then approximately planar section of the hillslope
with constant stream tube width (220–400 m); (2) the mildly
divergent section where the stream tube broadens (400–
500 m); and (3) the converging section (500–640 m). In the
first section specific catchment area is almost constant in the
short divergent part, where w increases from about 2 to 20 m,
then increases approximately linearly (appearing as a curved
line in Figure 3 because of the logarithmic scale) in the
planar part because of linearly increasing A and approxi-
mately constant w. In the second section the area continues
to increase at an increasing rate, but the increasing width
results in a decrease of specific catchment area. Beyond
500 m the decreasing width results in a continuously
increasing a even though the rate of increase in area reduces
and the area is essentially constant beyond 600 m.
[18] The problems with inaccurate line positions could be

treated by more sophisticated numerical methods or by
taking explicit measures to prevent the lines from crossing.

Figure 3. Flow width (or contour length) w, contributing area A, and specific catchment area a
computed from the stream tube of Figure 2. The flow width is not reliably estimated in the strongly
divergent ridgeline (0–190 m) or strongly convergent valley (>640 m).

GALLANT AND HUTCHINSON: A DIFFERENTIAL EQUATION FOR SPECIFIC CATCHMENT W05535W05535

4 of 14



Other complications with this approach arise when the slope
lines constructed upslope do not terminate on the same
hilltop, which is a problem that must be addressed by any
method that relies on explicit construction of slope lines
[Dawes and Short, 1994; Moretti and Orlandini, 2008]. The
definition of width and the location of the “middle” of the
stream tube can also be difficult in more complicated cases.
Fortunately, all these difficulties with the construction of
stream tubes can be avoided by looking more closely at the
behavior of specific catchment area along a single slope line.

3. Derivation of the Main Result

[19] Here we show that the relationships between area A
and width w can be used to derive specific catchment area a
along a slope line without separately determining A and w.
[20] In the first instance, consider a stream tube on a

conical surface where the slope lines are straight lines
originating at the peak of the cone and contours are circles
as shown in Figure 4. The area of the stream tube A at
distance l from the hilltop is the integral of flow width
w with respect to flow length:

A lð Þ ¼
Z l

0

w tð Þdt; ð3Þ

or in differential form

dA

dl
¼ w: ð4Þ

On the cone, the width w increases linearly along the flow
path

w ¼ l�; ð5Þ

where � is the angle between the slope lines at the peak. The
differential form is

dw

dl
¼ �; ð6Þ

¼ w

l
; ð7Þ

¼ w�c; ð8Þ

where �c is the curvature of the contour line, equal to the
inverse of the radius of curvature rc, which in this case is the
flow path length l. Here we adopt the convention that con-
tour curvature is positive for divergent flow paths as shown
in Figure 4.
[21] From the definition of specific catchment area

da

dl
¼ d

dl
lim
w!0

A

w

� �
; ð9Þ

¼ lim
w!0

w
dA

dl
� A

dw

dl
w2

; ð10Þ

¼ lim
w!0

w � w� Aw�c

w2
; ð11Þ

¼ 1� lim
w!0

A

w
�c; ð12Þ

¼ 1� a�c: ð13Þ

This equation provides an explicit differential equation
describing the evolution of specific catchment area along a
slope line in this simple case and demonstrates a direct link
between specific catchment area and contour curvature, also
known as plan curvature.
[22] To address the general case, we use an orthogonal

curvilinear coordinate system that naturally corresponds
with the surface slope and contour lines. Figure 5 shows the
coordinate system with u as the coordinate that varies along
the contour and v as the coordinate that varies along the
slope line. We define the orientations of u and v so that v
increases in the downhill direction and u increases to the
right when facing downhill, producing a right‐handed
coordinate system.
[23] The mathematical aspects of curvilinear coordinate

transformations are described in some detail by Courant
[1937, volume 2, section 3.3] and Jeffreys and Jeffreys
[1956, sections 4.14 and 5.052], and the relevant elements
are stated here. The (u, v) used here correspond to Courant’s
(x, h) and Jeffreys and Jeffreys’ (x′1, x′2).
[24] The transformation from (u, v) to (x, y) coordinates is

represented by functions

x ¼ g u; vð Þ; y ¼ h u; vð Þ: ð14Þ

There is a corresponding inverse transformation

u ¼ � x; yð Þ; v ¼ y x; yð Þ: ð15Þ

Figure 4. A stream tube on a conical hilltop. The radius of
curvature rc of the contour is equal to the flow path length l.
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Following Courant, a shorthand form of the derivatives of
those functions is used for convenience:

xu ¼ @

@u
g u; vð Þ

ux ¼ @

@x
8 x; yð Þ;

and so on.
[25] In a curvilinear coordinate system the coordinates do

not directly measure distances in space, and the conversion
to distance is achieved using scaling factors hu and hv

defined by (Jeffreys and Jeffreys [1956, section 4.14] with a
change of notation)

hu
2 ¼ x2u þ y2u ð16Þ

hv
2 ¼ x2v þ y2v : ð17Þ

[26] The partial derivatives must exist, and the scale
factors must be nonzero throughout the domain of analysis.
The network of slope lines and contours obeys this
requirement so long as the surface is continuously differ-
entiable, except where the surface is flat, i.e., at peaks, sinks,
and saddles. As noted above, these requirements restrict the
domain of analysis to areas away from peaks, sinks, and
saddles and away from lines where derivatives are discon-
tinuous, such as cliffs and sharp ridges and valleys.
[27] The quantity

J ¼ xu xv
yu yv

����
���� ¼ xuyv � xvyu ð18Þ

is known as the Jacobian and represents the infinitesimal
area in the (u, v) coordinate system, so the area of a region

bounded by lines of constant u and constant v is [Jeffreys
and Jeffreys, 1956, section 4.14]

A ¼
ZZ

Jdudv: ð19Þ

The right handedness of the (u, v) system as defined here
ensures that J is always positive. In particular, for a stream
tube bounded by streamlines at u0 and u extending from a
hilltop at v0 to a contour at v as shown in Figure 5, the area
is

A u0; u; v0; vð Þ ¼
Zu

u0

Zv

v0

Jdpdq: ð20Þ

The orthogonality of the (u, v) coordinate system, arising
from the fact that slope lines are always perpendicular to
contour lines, has several consequences that will be useful
in the following derivation [Jeffreys and Jeffreys, 1956,
section 4.14, equation (7)]:

xuxv þ yuyv ¼ 0 ð21Þ

J ¼ huhv: ð22Þ

The latter result follows from the fact that the two sides of the
infinitesimal area in the (u, v) system can be considered to be
straight lines of length hu du and hv dv [Jeffreys and Jeffreys,
1956, section 4.14], so the area is

dA ¼ hudu hvdv

¼ huhvdu dv:

We are interested in derivatives in the u and v directions in
terms of distances rather than the u and v values themselves,
so we will use k and l to denote distances in the u and
v directions, respectively, and use the scale factors to
express derivatives with respect to u and v:

@

@k
¼ 1

hu
@

@u
;

@

@l
¼ 1

hv
@

@v
: ð23Þ

With those definitions in place and considering the area of
the stream tube between the lines u and u + du in Figure 5,
the definition of specific catchment area gives

a u; vð Þ ¼ lim
�u!0

A u0; uþ �u; v0; vð Þ � A u0; u; v0; vð Þ
hu�u

; ð24Þ

¼ 1

hu
@A u0; u; v0; vð Þ

@u
; ð25Þ

¼ 1

hu
@

@u

Zu

u0

Zv

v0

Jdpdq; ð26Þ

¼ 1

hu

Zv

v0

Jdq: ð27Þ

Figure 5. The curvilinear coordinate system (u, v) and the
stream tube used for the derivation.
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Note that this integral proceeds along a line of constant u (a
slope line) from a starting point v0 which is located at the top
of a hill to the point (u, v).
[28] The rate of change of specific catchment area along

the slope line is then given by

@a

@l
¼ 1

hv
@a

@v
; ð28Þ

¼ 1

hv
@

@v

1

hu

Zv

v0

Jdq

0
@

1
A; ð29Þ

¼ 1

hv
1

hu
@

@v

Zv

v0

Jdqþ
Zv

v0

Jdq
@

@v

1

hu

0
@

1
A; ð30Þ

¼ 1

hv
1

hu
J þ hua

@

@v

1

hu

� �
; ð31Þ

¼ J

huhv
þ hu

hv
a
@

@v

1

hu
; ð32Þ

¼ 1þ a
hu

hv
�1

hu2

� �
@hu

@v
; ð33Þ

¼ 1� a
1

huhv
huv : ð34Þ

This is a similar form to (13) above, suggesting that the term
1

huhv
hv
u plays the same role as plan (contour) curvature. The

following shows they are in fact equivalent.
[29] Along a contour line where v is constant the curva-

ture is defined as [Courant, 1937, volume1, section 5.2.6]

� ¼ xuyuu � yuxuu

x2u þ y2u
� �3=2

; ð35Þ

using the convention that curvature is positive for an angle
with the x axis that increases along the curve. The choice
of positive contour curvature for diverging slope lines and u
directed toward the right looking downslope results in the
opposite sign for curvature. With the change of sign and
using (16) we have

�c ¼ yuxuu � xuyuu
hu3

: ð36Þ

Returning to the term in (34) that is expected to equal plan

curvature,
1

huhv
hv
u, we first differentiate (16) with respect to

v. This gives

huv ¼
xuxuv þ yuyuv

hu
: ð37Þ

We also differentiate (21) with respect to u:

xuxuv þ xvxuu þ yuyuv þ yvyuu ¼ 0: ð38Þ

Combining this with (37) gives

huv ¼
�xvxuu � yvyuu

hu
: ð39Þ

Returning to (16), we can write

x2u
hu2

þ y2u
hu2

¼ 1; ð40Þ

which can be expressed as

xu
hu

¼ cosA ð41Þ

yu
hu

¼ sinA ð42Þ

for some angle A. Similarly, from (17)

xv
hv

¼ cosB ð43Þ

yv
hv

¼ sinB: ð44Þ

Dividing both (21) and (18) by huhv gives

cosA cosBþ sinA sinB ¼ 0 ð45Þ

cosA sinB� cosB sinA ¼ 1: ð46Þ

Standard trigonometric identities transform these to

cos B� Að Þ ¼ 0 ð47Þ

sin B� Að Þ ¼ 1; ð48Þ

and hence

B� A ¼ �

2
; ð49Þ

leading to

cosB ¼ � sinA ð50Þ

sinB ¼ cosA: ð51Þ

Thus,

xv
hv

¼ � yu
hu

ð52Þ

yv
hv

¼ xu
hu

: ð53Þ

Substituting these identities into (39) gives

huv ¼
hvyuxuu � hvxuyuu

hu2
ð54Þ

1

huhv
huv ¼

yuxuu � xuyuu
hu3

¼ �c; ð55Þ
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confirming that in general

@a

@l
¼ 1� a�c: ð56Þ

Note that the partial derivative is used here, unlike the

simple case used to derive (13), where a does not vary with

position along the contour line.
[30] The only assumptions that have been made to arrive

at this result are the existence of the first and second deri-
vatives and the requirement that hu and hv are everywhere
nonzero away from the hilltop, which is a requirement for a
well‐defined coordinate system.
[31] Equation (56) is the main result of this paper. It can

be used to determine a at any point by first constructing a
single slope line upslope from the point of interest to a
hilltop, then integrating (56) down that same slope line, with
an initial condition of a = 0 at the hilltop.
[32] The two terms of the right‐hand side of (56) cor-

respond to the two sources of change in specific catchment
area: the constant term represents the source term, the
increment to a due to the increasing length of the slope
line, while the second term represents the effect of diver-
gence and convergence of the land surface. In divergent
areas (�c > 0) the two terms compete and a may increase
or decrease along the slope line, while in convergent areas
(�c < 0) the two terms combine to rapidly (exponentially)
increase a.
[33] The source term, the constant 1 in (56), can be varied

spatially for applications beyond the simple calculation of
specific catchment area: if the Jacobian J, representing
elemental area, is multiplied by a spatially varying source
term in the area integral (20), that source term carries
directly through to the final equation and replaces the con-
stant 1. This can be used, for example, to calculate surface
runoff from spatially variable rainfall excess by setting the
source term to the rainfall excess.
[34] It is also worthwhile noting that

@a

@l
is a topographic

attribute in its own right that appears in Moore and Wilson’s
[1992] soil erosion and deposition index. Use of (56) rather

than a numerical approximation to
@a

@l
may improve the

accuracy of the calculated erosion/deposition index.
[35] Equation (56) cannot, in general, be integrated ana-

lytically because the functional form of �c(l) is unknown.
For some simple surfaces the form of �c(l) is known and the
equation can be solved to give a(l). In other cases a
numerical solution is required.

4. Analytic Solutions for Simple Cases

[36] The simplest case for which an analytic solution to
(56) is possible is the planar slope where �c = 0:

@a

@l
¼ 1 ð57Þ

a lð Þ ¼ a0 þ l; ð58Þ
where a0 is the specific catchment area at the top of the
planar slope.
[37] Another simple case is the conical surface used to

derive (13), where the radius of curvature rc is equal to flow

length l so �c(l) = 1
l . The solution of (56) in this case is

obtained by substituting v = a
l , which transforms (56) to

dv

dl
¼ 1� 2v

l
ð59Þ

dl

l
¼ dv

1� 2v
; v 6¼ 1

2
: ð60Þ

Integration of (60) and expressing in terms of a yields

a ¼ l

2
� c

l
; ð61Þ

which diverges as l approaches 0. The alternative solution of

v =
1

2
yields

a lð Þ ¼ l

2
: ð62Þ

Like the planar slope, this equation can be readily derived
from first principles.
[38] A more general form of this solution is where �c(l ) =
1

c1l þ c0
, which yields

a lð Þ ¼ c0 þ c1l

1þ c1
þ a0 � c0

1þ c1

� �
c0 þ c1l

c0

� ��1=c1

; ð63Þ

provided c1 ≠ −1 and c1 ≠ 0. Note that this form of �c is not
applicable where plan curvature changes sign, nor is it
applicable when �c(0) = 0 because c0 would then be
undefined. Note that

c0 þ c1l

c0
¼ �c 0ð Þ

�c lð Þ ; ð64Þ

which is a positive quantity provided that �c does not
change sign; this is important because the ratio is raised to a
noninteger power. Equation (63) includes the solution to the
convergent cone case with an outer radius of R. In this case

a0 = 0 and �c(l) =
1

l � R
, so c1 = 1 and c0 = −R, which results

in

a lð Þ ¼ l 2R� lð Þ
2 R� lð Þ ; ð65Þ

which again matches the solution from first principles.
[39] The two excluded cases in (63), c1 = −1 and c1 = 0,

give different solutions. For c1 = −1

a lð Þ ¼ c0 � lð Þ a 0ð Þ
c0

� log
c0 � l

c0

� �� �
: ð66Þ

The ratio
c0 � l

c0
is again equivalent to

�c 0ð Þ
�c lð Þ .

[40] In the final case where c1 = 0, �c(l) is constant and
nonzero and the solution to (56) is

a lð Þ ¼ 1

�c
� 1

�c
� a0

� �
e��cl; ð67Þ

where a0 is the specific catchment area at the top of the
region with constant �c. When �c is negative (a uniformly
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curved valley), the terrain is convergent and a increases
exponentially. When �c is positive (a uniformly curved
ridge), the terrain is divergent and the exponential term
tends toward 0 with increasing l, so a tends exponentially

toward
1

�c
= rc, the radius of curvature of the contour lines.

When a =
1

�c
the two opposing terms in (56), divergence and

accumulation of area, balance exactly, so
@a

@l
¼ 0.

[41] The analytical solutions on mathematical surfaces are
not the main strength of equation (56). In fact, most of the
above results are easier to derive directly from equation (1)
than from (56). The main value of (56) is as a rigorous
foundation for exploring the behavior of specific catchment
area along a slope line on arbitrary surfaces. It provides an
equation that can be numerically integrated along a slope
line in complex topography to yield an accurate value of
specific catchment area that can be used to assess approxi-
mate numerical methods.

5. Numerical Methods

[42] To apply equation (56) on real topography, a math-
ematical representation of the real surface is required. This
involves several steps with various choices of how the ele-
vations of the real surface are measured and how those
measurements are represented and converted to a mathe-
matical form. The traditional approach has been to measure
the land surface photogrammetrically, represent the heights
as a contour map, and derive a grid of elevations from the
contours using a suitable interpolation technique [e.g.,
Hutchinson and Gallant, 2000]. A suitable mathematical
surface can then be derived from the grid. More recently,
surface elevations are being acquired as a dense set of
measured spot heights by laser altimetry or GPS surveying.
These are interpolated to a grid without using contours as an
intermediate representation. The grid of elevations can also
be derived directly from stereo image pairs using soft pho-
togrammetry or from radar interferometry.
[43] There are also choices in constructing a mathematical

surface from the grid DEM. To apply equation (56), the
slope lines must be defined by continuous first derivatives
and the plan curvature, which depends on second derivatives
of the land surface, must be integrable. As indicated in
section 1, this is most easily ensured by having a surface
with continuous first derivatives and piecewise continuous
second derivatives. This prevents slope lines from merging,
which would violate the assumptions underlying the curvi-
linear coordinate system. Accordingly, each slope line starts
at a hilltop and continues to a sink or the coast but in
practice typically stops at the edge of the DEM.
[44] In this paper we derive the mathematical surface

from a grid DEM using biquadratic spline interpolation [de
Boor, 1978]. Biquadratic splines are tensor products of
univariate quadratic splines, which have excellent approxi-
mation properties, superior to those of cubic splines when
applied to general continuous functions [Marsden, 1974].
The biquadratic spline interpolation method provides a
surface with the required continuous first derivatives and
piecewise continuous second derivatives. Using this surface,
slope lines are constructed of many short straight lines with
a length that adapts to the complexity of the surface so that
small steps are used where the slope line curves tightly.

Stationary points where the surface is exactly flat, namely,
hilltops, saddles, and sinks, are recognized by the numerical
scheme, and flow lines terminate at hilltops on the uphill
end and on sinks at the downhill end or when they continue
to the edge of the DEM. Spurious stationary points can be
generated by smooth interpolation methods, but this prob-
lem was not encountered in the experiments shown in this
paper, largely because of the sink‐free nature of the DEM
produced by ANUDEM and the high relief of the landscape
used for the experiments.
[45] The differential equation (56) gives an exact solution

of a for the chosen mathematical surface, however that is
defined. Approximations are made in obtaining the mathe-
matical surface from the real terrain surface and in the
numerical solution of (56), but the approximations due to
the numerical solution can be made negligibly small by
suitable numerical methods. The derived values of a will
thus not exactly represent the specific catchment area of the
real land surface, but that is due only to the approximations
in the representation of the real surface as a grid DEM and
the conversion of the grid to a mathematical surface.
[46] Numerical integration of (56) along a slope line

consists of computing the value of a at the end of each
successive line segment, starting from 0 at the top of the
slope line, using a model of �c along the line segment. The
value of �c is readily calculated at the endpoints of each line
segment from the derivatives of the interpolated biquadratic
spline surface:

�c ¼
�zxxz2y þ 2zxyzxzy � zyyz2x

z2x þ z2y

� �3=2

zx ¼ @z

dx
; zxy ¼ @2z

@x@y
; etc:

ð68Þ

The simplest approximation to �c(l) along the line segment
is to use a constant �c equal to the average of the endpoint
values and apply equation (67) to compute the new value of
a at the end of the line. A more accurate approach is to use
(63) with c1 and c0 calculated from �c at the beginning and
end of the line segment, provided that the conditions on that
equation are met. The algorithm applied here to demonstrate
the method uses (63) except where c1 is close to 0 or 1 or �c
changes sign along the line segment; in any of these cases
(67) is used.
[47] Two further numerical details need to be considered

when using (67). First, if �cl is quite small, the exponential
term is very close to 1 and loss of precision is likely due to
the subtraction. In this case, the planar slope solution (58)
can be used. In the implementation used here, (58) was
used whenever the absolute value of �cl was less than 10−4.
[48] Second, if �cl is quite large, the exponential calcu-

lation can underflow. This is not a problem from a mathe-
matical point of view, but underflow may cause an
unwanted floating point exception, so the solution

a lð Þ ¼ 1

�c
ð69Þ

could be used where �cl exceeds about 20. The implemen-
tation used here did not use this adjustment.
[49] Finally, where a slope line runs along a valley bottom

in convergent terrain, a will increase exponentially, even-
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tually causing numerical overflow. The implementation used
here ceased integrating (56) once a exceeds 1050. The value
of a loses any physical meaning at a value much less than
this.
[50] Computing specific catchment area for every cell in a

DEM would require constructing enough slope lines across
the surface that a slope line passes near the center of each
cell. Equation (56) could then be integrated along each line,
storing results in cells along the way. This complete cov-
erage has not been attempted but would require much more
computation than any of the standard contributing area
methods. The calculations would be further complicated by
the spurious flat points inevitably created by a continuous
interpolation. For these reasons, this method is viewed as a
precise reference against which other methods can be
compared rather than an operational tool for computing
specific catchment area.

6. Numerical Results

6.1. Simple Surfaces With Analytic Solutions

[51] Figure 6 shows specific catchment area computed
using equation (56) for three simple surfaces commonly
used for testing grid‐based specific catchment area and
contributing area methods. The three surfaces are an
inclined plane, a divergent cone, and a convergent cone,
each constructed as a 10 m resolution grid. For each surface
the numerical solution was obtained using the above algo-

rithm, and the analytical solution was obtained using (58)
for the inclined plane, (62) for the divergent cone, and
(65) for the convergent cone. The results show that the
numerical and analytical solutions are virtually identical,
indicating a well‐controlled numerical integration.

6.2. Comparison With the Explicit Stream Tube

[52] Figure 7 shows specific catchment area computed by
numerical integration of (56), compared with specific
catchment area and flow width computed using the stream
tube method shown in Figure 3. There is very close agree-
ment between the two estimates of a in the areas where the
width of the stream tube is well defined. On the ridge area
(about the first 200 m of the slope line) where the stream
tube width is unstable, the differential equation–based
method is clearly stable and consistent with the expected
behavior in divergent areas. As indicated by equation (67),
specific catchment area tends to the radius of curvature
along uniform divergent flow paths. The 20 m resolution of
the DEM used here combined with the smooth biquadratic
spline interpolation results in a radius of curvature of
approximately 10 m for contours on sharp ridgelines and
hence a specific catchment area of about 10 m for the
ridgeline flow path.
[53] From the point where the stream tube begins to

contract (l > 500 m), the specific catchment area computed
from (56) increases exponentially. Unlike the values obtained
from the stream tube, this exponential increase continues

Figure 6. Comparison of analytical solutions for a with values computed numerically on 10 m resolu-
tion DEMs of a planar slope, divergent cone, and convergent cone. The analytical and numerical solutions
are indistinguishable.
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through the entire convergent section. The exponential
increase is due to the large negative plan curvature in the
bottom of the valley. As noted in section 1, the connection
between water flow and specific catchment area based upon
slope lines is lost in conditions of concentrated flow and
there is little value in continuing the calculation of specific
catchment area in these areas. A suitable condition for
stopping the integration of specific catchment area needs to
be developed and might be related to geomorphic thresholds
linked to channel initiation. As an example, the line a = 5l in
Figure 7 illustrates one possible threshold that may be
suitable for this landscape.

6.3. Comparison With Conventional Methods

[54] The most useful application of (56) is as a standard
against which the more efficient approximate algorithms
such as D8, M8, DEMON, and D∞ can be compared in
complex landscapes. Contributing area was calculated for
the DEM using the D8, M8, and DEMON methods by the
TAPES‐G program [Gallant and Wilson, 1996; Gallant and
Wilson, 2000] and using the D∞ method [Tarboton, 1997]
by the Taudem tool version 3.1 for Esris ArcGIS 9 (http://
hydrology.usu.edu/taudem/taudem5.0/index.html). Conver-
sion of contributing area A to specific catchment area a
requires a flow width, and conventional methods were
applied here. For the D8 and M8 methods flow width was
the cell size h for cardinal D8 flow directions and

ffiffiffi
2

p
h for

diagonal D8 flow directions. For the DEMON method flow

width is (∣sin y∣ + ∣cos y∣)h, where y is the aspect angle
[Costa‐Cabral and Burges, 1994, equation (7)]. The Taudem
calculation of specific catchment area using the D∞ method
assumes that flow width is equal to grid size h regardless of
flow direction.
[55] Figure 8 shows values of specific catchment area

extracted from points along the central slope line of Figure 2
for the four methods and the results of (56) for comparison
(note that the vertical axis scale is expanded compared to
Figure 7). The behavior of the methods is different in the four
different regions of the flow path: the ridge section from 0 to
220 m flow length, the planar hillslope section from 220 to
400 m, the divergent hillslope from 400 to 500 m, and the
convergent section beyond 500 m.
[56] Along the ridge section all the grid‐based methods

overestimate the specific catchment area compared to (56).
This is largely due to the incorrect estimation of flow width
in strongly diverging terrain. Flow should be able to leave
the cell over most of the cell boundary, resulting in a flow
width 2–3 times larger than the cell size h. The irregularity
in the values for D8 and M8 is due to the flow width
changing abruptly from h to

ffiffiffi
2

p
h as the flow direction

changes between cardinal and diagonal. The D∞ method
does not vary flow width with flow direction, so it does not
exhibit any irregularity, while DEMON method varies flow
width gradually with aspect and thus shows a more subdued
variation. The M8 method gives the largest values in this
section presumably due to some accumulation of flow along
the ridge by the multiple–flow direction algorithm. Both

Figure 7. Comparison of a computed from equation (56) with a computed from the stream tube of
Figure 2. The flow width w from Figure 4 is also shown. The line a = 5l is one possible threshold for
identifying the onset of convergent flow in this landscape.
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the D8 and D∞ methods give single‐cell contributing areas
(400 m2), and hence specific catchment areas around 20 m,
along the entire ridge.
[57] Along the planar hillslope section all the methods

show a similar pattern of specific catchment area but with
some differences in bias. The D8 method appears to be the
most accurate in this section; the easterly orientation of the
slope line suits the simple D8 method of flow accumulation
in one of the eight directions, and similarly accurate results
would not be expected for noncardinal flow orientations
[Costa‐Cabral and Burges, 1994]. DEMON, M8, and D∞
behave very similarly and all tend to underestimate to an
increasing degree down the hillslope, reaching about 20% at
400 m flow length.
[58] The behaviors diverge markedly on the gently

divergent hillslope from 400 to 500 m. The D8 algorithm
predicts increasing specific catchment area until it reaches
one cell at a flow length of 470 m, as that is treated as a
ridge with no inflow, and specific catchment area drops
back to 20 m. It continues underestimating specific catch-
ment area for the remainder of this section. This is a sub-
stantial overreaction to the modest divergence in that area.
The M8 algorithm barely responds to the divergence, and its
estimate of specific catchment area does not decrease any-
where in this section. DEMON’s estimate increases gradu-
ally in the first part of this section, then drops abruptly to a
level consistent with the results from (56). D∞ behaves most
similarly to (56), decreasing gradually in the first part of the
divergent section, then dropping more abruptly in the most

divergent area. In the transition from divergent to conver-
gent around 520–560 m, M8, DEMON, and D∞ all over-
estimate specific catchment area.
[59] In the convergent section the solution to (56) no

longer corresponds to the ratio of area to width at the scale
of a DEM cell, so the estimates from the cell‐based methods
differ significantly from the analytic solution. This is also
the regime where assuming flow width is equal to cell size is
suspect: most of the flow is confined to a channel which
may have a width quite different from the cell size, and the
flow width varies with water depth.
[60] The specific catchment areas derived by the four

methods show a generally increasing trend as expected in a
channel. The abrupt drops occur where the slope line
derived from the interpolated surface crosses a cell that is
not considered to be part of the channel by the grid‐based
methods. Note that these drops are smallest for the M8
method because of its dispersion of flow across more than
one cell in the valley bottom, but the average value for M8 is
lower for the same reason. The D∞ and D8 values closely
match over most of the channel section.
[61] A more thorough comparison of the four methods

with (56), and an extension of the analysis to include more
recently developed methods such as D8‐LTD and MD/,
would be appropriate to examine their strengths and weak-
nesses in complex terrain. The limited analysis carried out
here suggests that the D∞ method responds best to varia-
tions in surface shape on hillslopes. All methods overesti-
mate a in strongly divergent terrain, suggesting that a

Figure 8. Comparison of a computed from equation (56) with a estimated using established cell‐based
methods for the central slope line of Figure 2. The bar labeled ×2 shows a ratio of 2 on the logarithmic
scale of the vertical axis.
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revision of the methods for estimating w, and perhaps A, in
these areas is desirable. It should also be noted that, as
pointed out by Orlandini and Moretti [2009], it is possible
for a cell‐based method to obtain correct values of a or A
while incorrectly representing the flow paths within that
contributing area, and this analysis does not address the
validity of the flow paths used by the cell‐based methods.
[62] It is not yet clear whether the discrepancies between

the approximate cell‐based methods and the analytical
solution have any impact on the representation of physical
processes using the approximate specific catchment area. It
may be that the errors that arise from the approximations
involved in measuring surface heights and creating a grid
DEM are larger than the errors that arise directly from the
estimation of specific catchment area from the resulting grid.
The method described here provides the opportunity to
make these comparisons and determine whether better
methods for calculating specific catchment area are needed.

6.4. Application to Dispersal Areas

[63] While contributing area A and specific catchment
area a are the most commonly used area attributes, dispersal
area D and specific dispersal area d are also used in some
circumstances. Dispersal area is the area downslope of a
contour segment and defines the area to which water drains
from the contour segment rather than the area supplying
water to the contour segment. Dispersal area can play a role
in predicting patterns of soil water content [Speight, 1980]
and in predicting soil properties [McKenzie and Ryan, 1999].
Delineating dispersal areas is also valuable for predicting the
extent of contamination from a pollutant source area [Costa‐
Cabral and Burges, 1994].
[64] Dispersal area and specific dispersal area obey

identical rules to contributing area and specific catchment
area, except that slope lines are constructed downslope from
the location of interest rather than upslope. The methods
described in this paper are equally applicable to calculation
of dispersal areas, apart from a change of sign due to the
decrease in dispersal area when proceeding downslope. The
dispersal area for a stream tube bounded by streamlines at u0
and u extending from contour at v to a flow termination
point at v1 is

D u0; u; v; v1ð Þ ¼
Zu

u0

Zv1
v

Jdpdq; ð70Þ

so specific dispersal area is

d ¼ 1

hu

Zv1
v

Jdq: ð71Þ

The rate of change of specific dispersal area along the slope
line is

@d

@l
¼ 1

hv
@d

@v
ð72Þ

¼ 1

hv
@

@v

1

hu

Zv1
v

Jdq

0
@

1
A; ð73Þ

¼ 1

hv
1

hu
@

@v

Zv1
v

Jdqþ
Zv1
v

Jdq
@

@v

1

hu

0
@

1
A; ð74Þ

¼ 1

hv
1

hu
�Jð Þ þ hud

@

@v

1

hu

� �
; ð75Þ

¼ �1� d
1

huhv
huv ; ð76Þ

¼ �1� d�c: ð77Þ

The integration of (77) must commence at the downslope
termination of the slope line with d = 0 and proceed upslope
in the opposite sense to l, so the quantity to integrate in the
upslope direction is 1 + �cd. Finding a suitable downslope
termination point is more difficult than for the specific
catchment area case: sinks in high‐relief terrain are rare
compared to peaks, and most good quality DEMs aim to
eliminate sinks in such areas to avoid impediments to
downhill flow. Slope lines will typically continue down-
slope to a shoreline, or the edge of the DEM, leading to a lot
of wasted work integrating (77) in long convergent valleys
where d remains close to 0. A more sophisticated crite-
rion for stopping the downslope construction of flow lines
would be useful, such as entry to a channel or strongly
convergent terrain, and an approach similar to the criterion
for calculating an effective path length suggested above
may be suitable.

7. Conclusion

[65] The nonlinear differential equation (56) defines the
rate of change of specific catchment area along a slope line
emanating from a hilltop as a function of specific catchment
area and plan curvature at every point on the slope line.
Integrating the equation along the slope line from the hilltop
yields specific catchment area at every point along the line
without having to estimate areas and flow widths, as all
existing grid‐ and contour‐based estimation methods do.
Analytical solutions are possible in simple cases, but in
general, numerical methods must be used.
[66] The equation and the methods for its numerical

solution presented here provide a precise reference against
which approximate methods can be tested on real topo-
graphic surfaces rather than just on simple mathematical
surfaces such as planes and cones. A preliminary evaluation
of the four commonly used methods supports previous
analyses that have shown that the more sophisticated
methods (M8, DEMON, and D∞) perform well on hill-
slopes, with the D8 method giving poor results. D∞ appears
to be the most accurate method overall. On ridges and
hilltops, all four methods overestimate specific catchment
area, apparently because of underestimation of flow width.
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sion. We are indebted to David Tarboton and Stefano Orlandini for their
thoughtful and instructive reviews that helped shape this paper. Those
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