107 research outputs found

    Analysis of hepatitis C virus RNA dimerization and core–RNA interactions

    Get PDF
    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus

    Paediatric and adolescent athletes in Switzerland: age-adapted proposals for pre-participation cardiovascular evaluation

    Full text link
    High-level sports competition is popular among Swiss youth. Even though preparticipation evaluation for competitive athletes is widespread, screening strategies for diseases responsible for sudden death during sport are highly variable. Hence, we sought to develop age-specific preparticipation cardiovascular evaluation (PPCE) proposals for Swiss paediatric and adolescent athletes (under 18 years of age). We recommend that all athletes practising in a squad with a training load of at least 6 hours per week should undergo PPCE based on medical history and physical examination from the age of 12 years on. Prior to 12 years, individual judgement of athletic performance is required. We suggest the inclusion of a standard 12-lead electrocardiogram (ECG) evaluation for all post-pubertal athletes (or older than 15 years) with analysis in accordance with the International Criteria for ECG Interpretation in Athletes. Echocardiography should not be a first-line screening tool but rather serve for the investigation of abnormalities detected by the above strategies. We recommend regular follow-up examinations, even for those having normal history, physical examination and ECG findings. Athletes with an abnormal history (including family history), physical examination and/or ECG should be further investigated and pathological findings discussed with a paediatric cardiologist. Importantly, the recommendations provided in this document are not intended for use among patients with congenital heart disease who require individualised care according to current guidelines

    Diagnostic yield and cost analysis of electrocardiographic screening in Swiss paediatric athletes

    Full text link
    OBJECTIVES Athletes performing sports on high level are at increased risk for sudden cardiac death. This includes paediatric athletes, even though data on screening strategies in this age group remain scarce. This study aimed to assess electrocardiogram interpretation criteria in paediatric athletes and to evaluate the cost of screening. METHODS National, multicentre, retrospective, observational study on 891 athletes of paediatric age (<18 years) evaluated by history, physical examination and 12-lead electrocardiogram. The primary outcome measure was abnormal electrocardiogram findings according to the International Recommendations for Electrographic Interpretation in Athletes. The secondary outcome measure was cost of screening. RESULTS 19 athletes (2.1%) presented abnormal electrocardiogram findings requiring further investigations, mainly abnormal T-wave inversion. These 19 athletes were predominantly males, performing endurance sports with a mean volume of 10 weekly hours for a mean duration of 6 years of training. Further investigations did not identify any relevant pathology. All athletes were cleared for competition with regular follow-up. Total costs of the screening were 108,860 USD (122 USD per athlete). CONCLUSIONS Our study using the International Recommendations for Electrographic Interpretation in Athletes identified a low count of abnormal findings in paediatric athletes, yet raising substantially the cost of screening. Hence, the utility of electrocardiogram-inclusive screening of paediatric athletes remains to be elucidated by longitudinal data

    Synthetic prions generated in vitro are similar to a newly identified subpopulation of PrPSc from sporadic Creutzfeldt-Jakob disease

    Get PDF
    In recent studies, the amyloid form of recombinant prion protein (PrP) encompassing residues 89–230 (rPrP 89-230) produced in vitro induced transmissible prion disease in mice. These studies showed that unlike “classical” PrPSc produced in vivo, the amyloid fibrils generated in vitro were more proteinase-K sensitive. Here we demonstrate that the amyloid form contains a proteinase K-resistant core composed only of residues 152/153–230 and 162–230. The PK-resistant fragments of the amyloid form are similar to those observed upon PK digestion of a minor subpopulation of PrPSc recently identified in patients with sporadic Creutzfeldt-Jakob disease (CJD). Remarkably, this core is sufficient for self-propagating activity in vitro and preserves a β-sheet-rich fibrillar structure. Full-length recombinant PrP 23-230, however, generates two subpopulations of amyloid in vitro: One is similar to the minor subpopulation of PrPSc, and the other to classical PrPSc. Since no cellular factors or templates were used for generation of the amyloid fibrils in vitro, we speculate that formation of the subpopulation of PrPSc with a short PK-resistant C-terminal region reflects an intrinsic property of PrP rather than the influence of cellular environments and/or cofactors. Our work significantly increases our understanding of the biochemical nature of prion infectious agents and provides a fundamental insight into the mechanisms of prions biogenesis

    Tropheryma whipplei tricuspid endocarditis: a case report and review of the literature

    Get PDF
    INTRODUCTION: The main clinical manifestations of Whipple's disease are weight loss, arthropathy, diarrhea and abdominal pain. Cardiac involvement is frequently described. However, endocarditis is rare and is not usually the initial presentation of the disease. To the best of our knowledge, this is the first reported case of a patient with Tropheryma whipplei tricuspid endocarditis without any other valve involved and not presenting signs of arthralgia and abdominal involvement. CASE PRESENTATION: We report a case of a 50-year-old Caucasian man with tricuspid endocarditis caused by Tropheryma whipplei, showing signs of severe shock and an absence of other more classic clinical signs of Whipple's disease, such as arthralgia, abdominal pain and diarrhea. Tropheryma whipplei was documented by polymerase chain reaction of the blood and pleural fluid. The infection was treated with a combined treatment of doxycycline, hydroxychloroquine and sulfamethoxazole-trimethoprim for one year. CONCLUSION: Tropheryma whipplei infectious endocarditis should always be considered when facing a blood-culture negative endocarditis particularly in right-sided valves. Although not standardized yet, treatment of Tropheryma whipplei endocarditis should probably include a bactericidal antibiotic (such as doxycycline) and should be given over a prolonged period of time (a minimum of one year)

    A short purification process for quantitative isolation of PrP(Sc) from naturally occurring and experimental transmissible spongiform encephalopathies

    Get PDF
    BACKGROUND: Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases affecting both humans and animals. They are associated with post-translational conversion of the normal cellular prion protein (PrP(C)) into a heat- and protease-resistant abnormal isoform (PrP(Sc)). Detection of PrP(Sc) in individuals is widely utilized for the diagnosis of prion diseases. METHODS: TSE brain tissue samples have been processed in order to quantitatively isolate PrP(Sc). The protocol includes an initial homogenization, digestion with proteinase K and salt precipitation. RESULTS: Here we show that over 97 percent of the PrP(Sc) present can be precipitated from infected brain material using this simple salting-out procedure for proteins. No chemically harsh conditions are used during the process in order to conserve the native quality of the isolated protein. CONCLUSION: The resulting PrP(Sc)-enriched preparation should provide a suitable substrate for analyzing the structure of the prion agent and for scavenging for other molecules with which it may associate. In comparison with most methods that exist today, the one described in this study is rapid, cost-effective and does not demand expensive laboratory equipment

    A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3

    Get PDF
    Reverse transcription in retroviruses and retrotransposons requires nucleic acid chaperones, which drive the rearrangement of nucleic acid conformation. The nucleic acid chaperone properties of the human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein have been extensively studied, and nucleic acid aggregation, duplex destabilization and rapid binding kinetics have been identified as major components of its activity. However, the properties of other nucleic acid chaperone proteins, such as retrotransposon Ty3 NC, a likely ancestor of HIV-1 NC, are not well understood. In addition, it is unclear whether a single zinc finger is sufficient to optimize the properties characteristic of HIV-1 NC. We used single-molecule DNA stretching as a method for detailed characterization of Ty3 NC chaperone activity. We found that wild type Ty3 NC aggregates single- and double-stranded DNA, weakly stabilizes dsDNA, and exhibits rapid binding kinetics. Single-molecule studies in the presence of Ty3 NC mutants show that the N-terminal basic residues and the unique zinc finger at the C-terminus are required for optimum chaperone activity in this system. While the single zinc finger is capable of optimizing Ty3 NC's DNA interaction kinetics, two zinc fingers may be necessary in order to facilitate the DNA destabilization exhibited by HIV-1 NC

    Propagation of RML Prions in Mice Expressing PrP Devoid of GPI Anchor Leads to Formation of a Novel, Stable Prion Strain

    Get PDF
    PrPC, a host protein which in prion-infected animals is converted to PrPSc, is linked to the cell membrane by a GPI anchor. Mice expressing PrPC without GPI anchor (tgGPI- mice), are susceptible to prion infection but accumulate anchorless PrPSc extra-, rather than intracellularly. We investigated whether tgGPI− mice could faithfully propagate prion strains despite the deviant structure and location of anchorless PrPSc. We found that RML and ME7, but not 22L prions propagated in tgGPI− brain developed novel cell tropisms, as determined by the Cell Panel Assay (CPA). Surprisingly, the levels of proteinase K-resistant PrPSc (PrPres) in RML- or ME7-infected tgGPI− brain were 25–50 times higher than in wild-type brain. When returned to wild-type brain, ME7 prions recovered their original properties, however RML prions had given rise to a novel prion strain, designated SFL, which remained unchanged even after three passages in wild-type mice. Because both RML PrPSc and SFL PrPSc are stably propagated in wild-type mice we propose that the two conformations are separated by a high activation energy barrier which is abrogated in tgGPI− mice

    Argonaute2 Suppresses Drosophila Fragile X Expression Preventing Neurogenesis and Oogenesis Defects

    Get PDF
    Fragile X Syndrome is caused by the silencing of the Fragile X Mental Retardation gene (FMR1). Regulating dosage of FMR1 levels is critical for proper development and function of the nervous system and germ line, but the pathways responsible for maintaining normal expression levels are less clearly defined. Loss of Drosophila Fragile X protein (dFMR1) causes several behavioral and developmental defects in the fly, many of which are analogous to those seen in Fragile X patients. Over-expression of dFMR1 also causes specific neuronal and behavioral abnormalities. We have found that Argonaute2 (Ago2), the core component of the small interfering RNA (siRNA) pathway, regulates dfmr1 expression. Previously, the relationship between dFMR1 and Ago2 was defined by their physical interaction and co-regulation of downstream targets. We have found that Ago2 and dFMR1 are also connected through a regulatory relationship. Ago2 mediated repression of dFMR1 prevents axon growth and branching defects of the Drosophila neuromuscular junction (NMJ). Consequently, the neurogenesis defects in larvae mutant for both dfmr1 and Ago2 mirror those in dfmr1 null mutants. The Ago2 null phenotype at the NMJ is rescued in animals carrying an Ago2 genomic rescue construct. However, animals carrying a mutant Ago2 allele that produces Ago2 with significantly reduced endoribonuclease catalytic activity are normal with respect to the NMJ phenotypes examined. dFMR1 regulation by Ago2 is also observed in the germ line causing a multiple oocyte in a single egg chamber mutant phenotype. We have identified Ago2 as a regulator of dfmr1 expression and have clarified an important developmental role for Ago2 in the nervous system and germ line that requires dfmr1 function
    corecore