2,667 research outputs found
Technology requirements for post-1985 communications satellites
The technical and functional requirements for commercial communication satellites are discussed. The need for providing quality service at an acceptable cost is emphasized. Specialized services are postulated in a needs model which forecasts future demands. This needs model is based upon 322 separately identified needs for long distance communication. It is shown that the 1985 demand for satellite communication service for a domestic region such as the United States, and surrounding sea and air lanes, may require on the order of 100,000 MHz of bandwith. This level of demand can be met by means of the presently allocated bandwidths and developing some key technologies. Suggested improvements include: (1) improving antennas so that high speed switching will be possible; (2) development of solid state transponders for 12 GHz and possibly higher frequencies; (3) development of switched or steered beam antennas with 10 db or higher gain for aircraft; and (4) continued development of improved video channel compression techniques and hardware
Technology requirements for communication satellites in the 1980's
The key technology requirements are defined for meeting the forecasted demands for communication satellite services in the 1985 to 1995 time frame. Evaluation is made of needs for services and technical and functional requirements for providing services. The future growth capabilities of the terrestrial telephone network, cable television, and satellite networks are forecasted. The impact of spacecraft technology and booster performance and costs upon communication satellite costs are analyzed. Systems analysis techniques are used to determine functional requirements and the sensitivities of technology improvements for reducing the costs of meeting requirements. Recommended development plans and funding levels are presented, as well as the possible cost saving for communications satellites in the post 1985 era
Storage Structures for Grass Silage
This publication deals primarily with one phase of forage production and preservation – structures for storing grass silage. The work has been conducted in cooperation with a North Central Regional project dealing with farm structures and pertaining to handling, storing, and feeding of grass silage with comparisons of various methods of storage and losses encountered. In addition Agronomy, Animal Husbandry, Dairy Husbandry, Economics, Plant Pathology, and Station Biochemistry departments at the South Dakota State4 College Agricultural Experiment station are conducting research in other phases of silage research have been published by some of the departments. Future reports will be issued as additional information is secured
Resolved Kinematics of Runaway and Field OB Stars in the Small Magellanic Cloud
We use GAIA DR2 proper motions of the RIOTS4 field OB stars in the Small
Magellanic Cloud (SMC) to study the kinematics of runaway stars. The data
reveal that the SMC Wing has a systemic peculiar motion relative to the SMC Bar
of (v_RA, v_Dec) = (62 +/-7, -18+/-5) km/s and relative radial velocity +4.5
+/- 5.0 km/s. This unambiguously demonstrates that these two regions are
kinematically distinct: the Wing is moving away from the Bar, and towards the
Large Magellanic Cloud with a 3-D velocity of 64 +/- 10 km/s. This is
consistent with models for a recent, direct collision between the Clouds. We
present transverse velocity distributions for our field OB stars, confirming
that unbound runaways comprise on the order of half our sample, possibly more.
Using eclipsing binaries and double-lined spectroscopic binaries as tracers of
dynamically ejected runaways, and high-mass X-ray binaries (HMXBs) as tracers
of runaways accelerated by supernova kicks, we find significant contributions
from both populations. The data suggest that HMXBs have lower velocity
dispersion relative to dynamically ejected binaries, consistent with the former
corresponding to less energetic supernova kicks that failed to unbind the
components. Evidence suggests that our fast runaways are dominated by
dynamical, rather than supernova, ejections.Comment: Accepted to ApJ Letters. 10 pages, 4 figure
A New Class of Majoron-Emitting Double-Beta Decays
Motivated by the excess events that have recently been found near the
endpoints of the double beta decay spectra of several elements, we re-examine
models in which double beta decay can proceed through the neutrinoless emission
of massless Nambu-Goldstone bosons (majorons). Noting that models proposed to
date for this process must fine-tune either a scalar mass or a VEV to be less
than 10 keV, we introduce a new kind of majoron which avoids this difficulty by
carrying lepton number . We analyze in detail the requirements that
models of both the conventional and our new type must satisfy if they are to
account for the observed excess events. We find: (1) the electron sum-energy
spectrum can be used to distinguish the two classes of models from one another;
(2) the decay rate for the new models depends on different nuclear matrix
elements than for ordinary majorons; and (3) all models require a (pseudo)
Dirac neutrino, having a mass of a several hundred MeV, which mixes with
.Comment: 43 pages, 10 figures (included), [figure captions are now included
Influence of silicon doping on vacancies and optical properties of AlxGa1-xN thin films
The authors have used positron annihilation spectroscopy and photoluminescence measurements to study the influence of silicon doping on vacancy formation in AlGaN:Si structures. The results show a correlation between the Doppler broadening measurements and the intensity from 510nm photoluminescence transition. The reduction in the W parameter when the [Si]∕[Al+Ga] fraction in the gas phase is above 3×10exp−4 indicates that the positrons annihilate in an environment where less Ga 3d electrons are present, i.e., they are trapped in group-III vacancies. The observation of vacancies at these silicon concentrations coincides with the onset of the photoluminescence transition at 510 nm.Peer reviewe
Dynamical mechanism of atrial fibrillation: a topological approach
While spiral wave breakup has been implicated in the emergence of atrial
fibrillation, its role in maintaining this complex type of cardiac arrhythmia
is less clear. We used the Karma model of cardiac excitation to investigate the
dynamical mechanisms that sustain atrial fibrillation once it has been
established. The results of our numerical study show that spatiotemporally
chaotic dynamics in this regime can be described as a dynamical equilibrium
between topologically distinct types of transitions that increase or decrease
the number of wavelets, in general agreement with the multiple wavelets
hypothesis. Surprisingly, we found that the process of continuous excitation
waves breaking up into discontinuous pieces plays no role whatsoever in
maintaining spatiotemporal complexity. Instead this complexity is maintained as
a dynamical balance between wave coalescence -- a unique, previously
unidentified, topological process that increases the number of wavelets -- and
wave collapse -- a different topological process that decreases their number.Comment: 15 pages, 14 figure
Face-to-face: Social work and evil
The concept of evil continues to feature in public discourses and has been reinvigorated in some academic disciplines and caring professions. This article navigates social workers through the controversy surrounding evil so that they are better equipped to acknowledge, reframe or repudiate attributions of evil in respect of themselves, their service users or the societal contexts impinging upon both. A tour of the landscape of evil brings us face-to-face with moral, administrative, societal and metaphysical evils, although it terminates in an exhortation to cultivate a more metaphorical language. The implications for social work ethics, practice and education are also discussed
Bone marrow fat is increased in chronic kidney disease by magnetic resonance spectroscopy
In aging, the bone marrow fills with fat and this may lead to higher fracture risk. We show that a bone marrow fat measurement by magnetic resonance spectroscopy (MRS), a newer technique not previously studied in chronic kidney disease (CKD), is useful and reproducible. CKD patients have significantly higher bone marrow fat than healthy adults.
INTRODUCTION: Renal osteodystrophy leads to increased morbidity and mortality in patients with CKD. Traditional bone biopsy histomorphometry is used to study abnormalities in CKD, but the bone marrow, the source of osteoblasts, has not been well characterized in patients with CKD.
METHODS: To determine the repeatability of bone marrow fat fraction assessment by MRS and water-fat imaging (WFI) at four sites in patients with CKD, testing was performed to determine the coefficients of reproducibility and intraclass coefficients (ICCs). We further determined if this noninvasive technique could be used to determine if there are differences in the percent bone marrow fat in patients with CKD compared to matched controls using paired t tests.
RESULTS: The mean age of subjects with CKD was 59.8 ± 7.2 years, and the mean eGFR was 24 ± 8 ml/min. MRS showed good reproducibility at all sites in subjects with CKD and controls, with a coefficient of reproducibilities ranging from 2.4 to 13 %. MRS and WFI assessment of bone marrow fat showed moderate to strong agreement (ICC 0.6-0.7) at the lumbar spine, with poorer agreement at the iliac crest and no agreement at the tibia. The mean percent bone marrow fat at L2-L4 was 13.8 % (95 % CI 8.3-19.7) higher in CKD versus controls (p < 0.05).
CONCLUSIONS: MRS is a useful and reproducible technique to study bone marrow fat in CKD. Patients with CKD have significantly higher bone marrow fat than healthy adults; the relationship with bone changes requires further analyses
Neutrinoless Double Beta Decay within QRPA with Proton-Neutron Pairing
We have investigated the role of proton-neutron pairing in the context of the
Quasiparticle Random Phase approximation formalism. This way the neutrinoless
double beta decay matrix elements of the experimentally interesting A= 48, 76,
82, 96, 100, 116, 128, 130 and 136 systems have been calculated. We have found
that the inclusion of proton-neutron pairing influences the neutrinoless double
beta decay rates significantly, in all cases allowing for larger values of the
expectation value of light neutrino masses. Using the best presently available
experimental limits on the half life-time of neutrinoless double beta decay we
have extracted the limits on lepton number violating parameters.Comment: 16 RevTex page
- …