228 research outputs found

    Preface and keynote’s talk of the Workshop on Social Interaction-based Recommendation (SIR 2018)

    Get PDF
    This paper summarises all the topics discussed by the invited talk Prof. Gabriella Pasi, during the first edition of the SIR: Workshop on Social Interaction-based Recommendation-The hosted by the 27th International Conference on Information and Knowledge Management (CIKM 2018) - October 22 2018, Turin (Italy)

    Leaf monoterpene emission limits photosynthetic downregulation under heat stress in field-grown grapevine

    Get PDF
    Rising temperature is among the most remarkably stressful phenomena induced by global climate changes with negative impacts on crop productivity and quality. It has been previously shown that volatiles belonging to the isoprenoid family can confer protection against abiotic stresses. In this work, two Vitis vinifera cv. ‘Chardonnay’ clones (SMA130 and INRA809) differing due to a mutation (S272P) of the DXS gene encoding for 1-deoxy-D-xylulose-5-phosphate (the first dedicated enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway) and involved in the regulation of isoprenoids biosynthesis were investigated in field trials and laboratory experiments. Leaf monoterpene emission, chlorophyll fluorescence and gas-exchange measurements were assessed over three seasons at different phenological stages and either carried out in in vivo or controlled conditions under contrasting temperatures. A significant (p < 0.001) increase in leaf monoterpene emission was observed in INRA809 when plants were experiencing high temperatures and over two experiments, while no differences were recorded for SMA130. Significant variation was observed for the rate of leaf CO2 assimilation under heat stress, with INRA809 maintaining higher photosynthetic rates and stomatal conductance values than SMA130 (p = 0.003) when leaf temperature increased above 30 °C. At the same time, the maximum photochemical quantum yield of PSII (Fv/Fm) was affected by heat stress in the non-emitting clone (SMA130), while the INRA809 showed a significant resilience of PSII under elevated temperature conditions. Consistent data were recorded between field seasons and temperature treatments in controlled environment conditions, suggesting a strong influence of monoterpene emission on heat tolerance under high temperatures. This work provides further insights on the photoprotective role of isoprenoids in heat-stressed Vitis vinifera, and additional studies should focus on unraveling the mechanisms underlying heat tolerance on the monoterpene-emitter grapevine clone

    Artificial intelligence applied to software testing:a tertiary study

    Get PDF
    Context: Artificial intelligence (AI) methods and models have extensively been applied to support different phases of the software development lifecycle, including software testing (ST). Several secondary studies investigated the interplay between AI and ST but restricted the scope of the research to specific domains or sub-domains within either area.Objective: This research aims to explore the overall contribution of AI to ST, while identifying the most popular applications and potential paths for future research directions.Method: We executed a tertiary study following well-established guidelines for conducting systematic literature mappings in software engineering and for answering nine research questions.Results: We identified and analyzed 20 relevant secondary studies. The analysis was performed by drawing from well-recognized AI and ST taxonomies and mapping the selected studies according to them. The resulting mapping and discussions provide extensive and detailed information on the interplay between AI and ST.Conclusion: The application of AI to support ST is a well-consolidated and growing interest research topic. The mapping resulting from our study can be used by researchers to identify opportunities for future research, and by practitioners looking for evidence-based information on which AI-supported technology to possibly adopt in their testing processes

    Adaptable Pulse Compression in φ-OTDR With Direct Digital Synthesis of Probe Waveforms and Rigorously Defined Nonlinear Chirping

    Get PDF
    Recent research in Phase-Sensitive Optical Time Doman Reflectometry (φ-OTDR) has been focused, among others, on performing spatially resolved measurements with various methods including the use of frequency modulated probes. However, conventional schemes either rely on phase-coded sequences, involve inflexible generation of the probe frequency modulation or mostly employ simple linear frequency modulated (LFM) pulses which suffer from elevated sidelobes introducing degradation in range resolution. In this contribution, we propose and experimentally demonstrate a novel φ-OTDR scheme which employs a readily adaptable Direct Digital Synthesis (DDS) of pulses with custom frequency modulation formats and demonstrate advanced optical pulse compression with a nonlinear frequency modulated (NLFM) waveform containing a complex, rigorously defined modulation law optimized for bandwidth-limited synthesis and sidelobe suppression. The proposed method offers high fidelity chirped waveforms, and when employed in resolving a 50-cm event at ∼1.13 km using a 1.2-μs probe pulse, matched filtering with the DDS-generated NLFM waveform results in a significant reduction in range ambiguity owing to autocorrelation sidelobe suppression of ∼20 dB with no averages and windowing functions, for an improvement of ∼16 dB compared to conventional linear chirping. Experimental results also show that the contribution of autocorrelation sidelobes to the power in the compressed backscattering responses around localized events is suppressed by up to ∼18 dB when advanced pulse compression with an optical NLFM pulse is employed

    Large-FSR Thermally Tunable Double-Ring Filters for WDM Applications in Silicon Photonics

    Get PDF
    International audience; We present the design procedure and experimental results of thermally tunable double ring resonators for integrated wavelength division multiplexing applications. A detailed analytical model specific for double rings is described, and a modified racetrack geometry using Bezier bends is used to reduce bending loss. We demonstrate devices with a free-spectral-range up to 2.4 THz ( 19 nm) around 1550 nm and nonadjacent channel rejection higher than 35 dB. The experimental results of thermally tunable double ring resonators is also presented with doped silicon integrated heaters, allowing the device to be used as a tunable filter or a switch

    Ultracompact microinterferometer-based fiber Bragg grating interrogator on a silicon chip

    Get PDF
    We report an interferometer-based multiplexed fiber Bragg grating (FBG) interrogator using silicon photonic technology. The photonic-integrated system includes the grating coupler, active and passive interferometers, interferometers, a 12-channel wavelength-division-multiplexing (WDM) filter, and Ge photodiodes, all integrated on a 6x8&nbsp;mm2 silicon chip. The system also includes optical and electric interfaces to a printed board, which is connected to a real-time electronic board that actively performs the phase demodulation processing using a multitone mixing (MTM) technique. The device with active demodulation, which uses thermally-based phase shifters, features a noise figure of σ&nbsp; = &nbsp;0.13&nbsp;pm at a bandwidth of 700&nbsp;Hz, which corresponds to a dynamic spectral resolution of 4.9&nbsp;fm/Hz1/2. On the other hand, the passive version of the system, based on a 90º-hybrid coupler, features a noise figure of σ&nbsp; = &nbsp;2.55&nbsp;pm at a bandwidth of 10&nbsp;kHz, also showing successful detection of a 42&nbsp;kHz signal when setting the bandwidth to 50&nbsp;kHz. These results demonstrate the advantage of integrated photonics, which allows the integration of several systems with different demodulation schemes in the same chip and guarantees easy scalability to a higher number of ports without increasing the dimensions or the cost
    • …
    corecore