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Context: Artificial intelligence (AI) methods and models have extensively been applied to support different
phases of the software development lifecycle, including software testing (ST). Several secondary studies in-
vestigated the interplay between AI and ST but restricted the scope of the research to specific domains or
sub-domains within either area.
Objective: This research aims to explore the overall contribution of AI to ST, while identifying the most popular
applications and potential paths for future research directions.
Method: We executed a tertiary study following well-established guidelines for conducting systematic litera-
ture mappings in software engineering and for answering nine research questions.
Results: We identified and analyzed 20 relevant secondary studies. The analysis was performed by drawing
from well-recognized AI and ST taxonomies and mapping the selected studies according to them. The result-
ing mapping and discussions provide extensive and detailed information on the interplay between AI and ST.
Conclusion: The application of AI to support ST is a well-consolidated and growing interest research topic.
The mapping resulting from our study can be used by researchers to identify opportunities for future research,
and by practitioners looking for evidence-based information on which AI-supported technology to possibly
adopt in their testing processes.

CCS Concepts: • Software and its engineering→ Software creation and management; Software ver-

ification and validation; Software testing and debugging; • Computing methodologies→ Artificial

intelligence; Machine learning; • General and reference→ Surveys and overviews;

Additional Key Words and Phrases: Artificial intelligence, Software testing, Taxonomy, Tertiary study, Sys-
tematic literature review, Systematic mapping study

ACM Reference format:

Domenico Amalfitano, Stefano Faralli, Jean Carlo Rossa Hauck, Santiago Matalonga, and Damiano Distante.
2023. Artificial Intelligence Applied to Software Testing: A Tertiary Study. ACM Comput. Surv. 56, 3, Article 58
(October 2023), 38 pages.
https://doi.org/10.1145/3616372

Authors’ addresses: D. Amalfitano, University of Naples Federico II, Via Claudio, 21, Napoli, Italy, 80125; email:
domenico.amalfitano@unina.it; S. Faralli, Sapienza University of Rome, Via Salaria, 113, Rome, Italy, 00198; email: faralli@
di.uniroma1.it; J. C. R. Hauck, Federal University of Santa Catarina, Campus Universitário Trindade, Florianopolis, Brazil,
88040-200; email: jean.hauck@ufsc.br; S. Matalonga, University of the West of Scotland, High Street Paisley, Paisley, United
Kingdom, PA13AP; email: santiago.matalonga@uws.ac.uk; D. Distante, University of Rome UnitelmaSapienza, Piazza Sas-
sari, 4, Rome, Italy, 00161; email: damiano.distante@unitelmasapienza.it.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
0360-0300/2023/10-ART58 $15.00
https://doi.org/10.1145/3616372

ACM Computing Surveys, Vol. 56, No. 3, Article 58. Publication date: October 2023.

https://orcid.org/0000-0002-4761-4443
https://orcid.org/0000-0003-3684-8815
https://orcid.org/0000-0001-6550-9092
https://orcid.org/0000-0001-5429-2449
https://orcid.org/0000-0002-8467-535X
https://doi.org/10.1145/3616372
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3616372
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3616372&domain=pdf&date_stamp=2023-10-06


58:2 D. Amalfitano et al.

1 INTRODUCTION

Software testing (ST) and artificial intelligence (AI) are two research areas with a long and
ripe history in computing. AI methodologies and techniques have been around for more than
50 years [38] and, in the current century, with the advances in computational resources and the
abundance of data, their potential has vastly increased. As a consequence, AI has been applied to
fields as diverse as healthcare [39], project management [54], finance [66], law [93], and many more.
Both the academic research community and the industry have injected AI paradigms to provide
solutions to traditional engineering problems. Similarly, AI has evidently been useful to software

engineering (SE) [7, 13, 47]. ST has always been an intrinsic part of the software development
lifecycle [85]. Yet, as software has become more and more pervasive, it has also grown in size and
complexity [16], bringing new challenges to software testing practices [64]. Therefore, with AI
poised to enhance knowledge work, there is interest in analyzing how it has been used to improve
testing practices. Several studies have explored the interplay between AI and ST [51]. Yet, given the
breadth and depth of each of these disciplines, high-quality review studies tend to focus their scope
on orthogonal selections in each of these areas. For instance, the use of evolutionary algorithms
for regression test case prioritization has been investigated in [76] while the application of natural
language processing technique in ST has been analyzed in [35]. Alternatively, unstructured review
papers or position papers have proposed how these two fields would merge.

The goal of this work is to uncover evidence on how AI has been applied to support ST, to reveal
established hinge points between the two research areas and future trends. In particular, in this
study, we focus on dynamic testing that, according to the ISO 29119 standard [34], comprises the
activities that are performed to assess whether a software product works as expected when it is
executed. To achieve this goal, we conducted a tertiary systematic mapping study. In this work, we
adhere to the definitions by Kitchenham et al. [52]. A primary study is an empirical investigation
into specific research questions, while a secondary study is a review of primary studies related to
specific research questions with the aim of synthesising evidence. Finally, a tertiary study, of which
this research is an example, is a review of secondary studies related to the same research questions
with the aim of uncovering mappings and/or trends. The need for a tertiary study, particularly a sys-
tematic mapping study, on the interplay of AI and ST is motivated by the following considerations:

• although there are already several secondary studies investigating the application of AI to
ST, to manage the vastness of the two research areas, most of these studies limit their scope
with an orthogonal division of one or both areas;
• there is a wealth of primary studies that makes it unfeasible to approach our research goal

with a secondary study, if not by limiting the scope of the research, as the identified sec-
ondary studies have done;
• a systematic process makes the work reproducible and provides internal consistency to the

results and focuses the discussion on available evidence in existing secondary studies;
• a systematic mapping study is suited to structure a research area [77], and as such is more

suitable than a systematic literature review in our research context because of the size and
scope of the bodies of knowledge (AI and ST). Furthermore, after an initial investigation,
we noted that secondary studies that applied systematic literature reviews as their research
method are able to do so by limiting the scope to a sub-domain (for instance, search base
techniques for ST). Therefore, to observe the whole possible interplay between AI and ST, a
systematic mapping is the suitable research method for this tertiary study.

As a main contribution, this article provides a broad view of the AI applications in support of
ST. An additional novel contribution of this work is a fine-grained mapping showing how specific
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testing fields have been supported by specific AI sub-domains and methodologies. This mapping
can be used by researchers to identify open topics for future research on new applications of AI
for ST and by practitioners to make decisions on the most suitable AI-supported technologies that
can be introduced in their testing processes. To the best of our knowledge, this is the first tertiary
study that attempts to depict a comprehensive picture of how AI is used to support ST, and how the
two research domains are woven. The remainder of the article is organized as follows. Section 2
introduces the key concepts and terminology related to the areas of interest of our study. Section 3
describes the protocol we designed to support the process of selecting secondary studies of interest
and for extracting evidence from them. Section 4 provides insights about the process execution.
Section 5 analyzes extracted data and answers our research questions. Section 6 presents overall
considerations on the results of our study and provides a focus on testing activities whose automa-
tion has been supported by different AI techniques. Section 7 discusses threats to the validity of
our study. Finally, Section 8 concludes the article and provides final remarks.

2 BACKGROUND

AI and ST are two large and complex research areas for which there are no universally agreed upon
taxonomies nor bodies of knowledge. As a way to define the language and vocabulary that has been
used throughout the article, we built two taxonomies, one for each research area. The taxonomy
shown in Figure 6 reports the AI key concepts that have been used to support ST, whereas the one
in Figure 7 refers to the ST key concepts that have been supported by AI. In the following sections,
we provide a short description of the two research areas, the domains, and sub-domains of each
taxonomy along with a short definition of related key concepts that are relevant to our study. For
each key concept, we also provide a proper literature reference from which it is possible to access
more detailed and complete definitions.

2.1 Artificial Intelligence

Although there exist many definitions of AI, for the aims of this study, we mention the one given
in the European Commission JCR report on AI [59]: “AI is a generic term that refers to any ma-
chine or algorithm that is capable of observing its environment, learning, and based on the knowledge
and experience gained, taking intelligent action or proposing decisions. There are many technologies
that fall under this broad AI definition. At the moment, ML techniques are the most widely used.”
This definition was adopted by the AI Watch1 in [88] as the starting point for the specification of
an operational definition and a taxonomy of AI aimed at supporting the mapping of the AI land-
scape and at detecting AI applications in a wide range of technological contexts. The taxonomy
provided by the AI Watch report includes five core scientific domains, namely, Reasoning, Plan-
ning, Learning, Communication, and Perception, and three transversal domains, namely Integration
and Interaction, Services, and Ethics and Philosophy. The overall taxonomy is depicted in Figure 6,
where: (i) white boxes represent domains and key concepts drawn from the AI Watch report [88],
while (ii) gray boxes are additional key concepts extracted, during the mapping process, from the
analyzed secondary studies.

2.1.1 Reasoning. The AI domain studying methodologies to transform data into knowledge
and infer facts from them. This domain includes three sub-domains: knowledge representation,
automated reasoning, and common sense reasoning. Knowledge representation is the area of AI ad-
dressing the problem of representing, maintaining, and manipulating knowledge [56]. Automated

1The European Commission knowledge service to monitor the development, uptake, and impact of artificial intelligence
for Europe.
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reasoning is concerned with the study of using algorithms that allow machines to reason automat-
ically [14]. Finally, as described in [27], common sense reasoning is the field of science studying the
human-like ability to make presumptions about the type and essence of ordinary situations. Key
concepts related to our study and belonging to this domain are: (i) fuzzy logic, a form of logic in
which the truth value of variables may be any real number (between 0 and 1) [72], (ii) knowledge
representation and reasoning, the use of symbolic rules to represent and infer knowledge [56], (iii)
ontologies, forms of knowledge representation facilitating knowledge sharing and reuse [31], and
(iv) semantic web, an extension of the World Wide Web through standards set by the World Wide
Web Consortium,2 which “ . . . enables people to create data stores on the Web, build vocabularies, and
write rules for handling data”3 [75].

2.1.2 Planning. The AI domain whose main purpose concerns the design and execution of
strategies to carry out an activity, typically performed by intelligent agents, autonomous robots,
and unmanned vehicles. In this domain, strategies are identified by complex solutions that must
be discovered and optimized in a multidimensional space. This domain includes three highly re-
lated sub-domains dealing with the problem of optimizing the search for solutions to planning and
scheduling problems, namely, planning and scheduling, searching, and optimization. Key concepts
related to our study and belonging to this domain are: (i) constraint satisfaction, the process of find-
ing a solution to a set of constraints on a set of variables [99], (ii) evolutionary algorithms, a subset
of metaheuristic optimization algorithms based on mechanisms inspired by biological evolution,
such as reproduction, mutation, recombination, and selection [6], (iii) genetic algorithms, a branch
of evolutionary algorithms inspired by the process of natural selection relying on biologically in-
spired operators such as mutation, crossover and selection [69], (iv) graph plan algorithms, a family
of planning algorithms based on the expansion of compact structures known as planning graphs
[17], (v) hyper-heuristics, the field dealing with the problem of automating the design of heuristic
methods to solve hard computational search problems [21], and (vi) metaheuristic optimization, the
research field dealing with optimization problems using metaheuristic algorithms [19].

2.1.3 Learning. The AI domain dealing with the ability of systems to automatically learn, de-
cide, predict, adapt and react to changes and improve from experience, without being explicitly
programmed. The corresponding branch of the resulting taxonomy is mainly constructed with
machine learning (ML)-related concepts. Key concepts related to our study and belonging to this
domain are: (i) artificial neural networks, a family of supervised algorithms inspired by the biolog-
ical neural networks that constitute animal brains [41], the training of a neural network consists
in observing the data regarding the inputs and the expected output, and in forming probability-
weighted associations between the two, which are stored within the data structure of the network
itself - designed as a sequence of layers of connected perceptrons [86], (ii) boosting, is an ensemble
meta-algorithm for the reduction of bias and variance error’s components [20], (iii) classification,
a supervised task where a model is trained on a population of instances labeled with a discrete set
of labels and the outcome is a set of predicted labels for a given collection of unobserved instances
[55], (iv) clustering, an unsupervised task were given a similarity function, objects are grouped into
clusters so that objects in the same cluster are more similar to each other than to objects in other
clusters [105], (v) convolutional neural networks, a specialized type of neural networks that uses con-
volution in place of general matrix multiplication in at least one of its layers [37], (vi) decision trees,
a family of classification and regression algorithms that learn hierarchical structures of simple de-
cision rules from data and whose resulting models can be depicted as trees were nodes represent

2W3C https://www.w3.org/
3SEMANTIC WEB-W3C https://www.w3.org/standards/semanticweb/
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decision rules and leaf nodes are the outcomes [70], (vii) ensemble methods, algorithms leveraging
a set of individually trained classifiers (such as, decision trees) whose predictions are combined to
produce more accurate predictions than any of the single classifiers [73], (viii) probabilistic models,
a family of classifiers that are able to predict, given an observation of an input, a probability dis-
tribution over a set of classes [40], (ix) recurrent neural networks, neural networks with recurrent
connections, which can be used to map input sequences to output sequences [15], (x) reinforce-
ment learning, is one of the fundamental machine learning paradigms, where algorithms address
the “problem faced by an agent that must learn behavior through trial-and-error interactions with
a dynamic environment” [46], (xi) regression, a set of mathematical methods that allow data scien-
tists to predict a continuous outcome based on the value of one or more predictor variables [106],
(xii) supervised learning, a machine learning paradigm for problems where the available data con-
sists of labelled examples [87], (xiii) support vector machines, supervised learning algorithms where
input features are non-linearly mapped to a very high-dimension feature space and a linear deci-
sion surface is constructed to generate classification and regression analysis models [24], and (xiv)
unsupervised learning, one of the fundamental machine learning paradigms where algorithms try
to learn patterns from unlabelled data [87].

2.1.4 Communication. The AI domain referring to the abilities of identifying, processing, un-
derstanding, and generating information from written and spoken human communications. This
domain is mainly covered by the natural language processing (NLP) [45, 62]. Key concepts re-
lated to our study and belonging to this domain are: (i) information extraction, the automatic ex-
traction of structured information, such as entities, relationships and attributes describing enti-
ties, from unstructured sources [90], (ii) information retrieval deals with the problem of “finding
material (usually documents) of an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers)” [61], (iii) natural language genera-
tion refers to “the process of constructing natural language outputs from non-linguistic inputs” [80],
(iv) natural language understanding refers to “computer understanding of human language, which in-
cludes spoken as well as typed communication” [103], (v) text mining is the semi-automated process
of extracting knowledge from a large number of unstructured texts [29], and (vi) word embedding
is “a word representation involving the mathematical embedding from a space with many dimensions
per word to a continuous vector space with a much lower dimension” [45].

2.1.5 Perception. Refers to the ability of a system to become aware of the environment through
the senses of vision and hearing. Although this is a broad domain of AI with many AI applications,
the only key concept coming from this domain (particularly, from the sub-domain of computer
vision) related to our study is image processing, which is the field dealing with the use of machines
to process digital images through algorithms [78].

2.1.6 Integration and Interaction. A transversal AI domain comprising, among others, the multi-
agent systems sub-domain. It can be described as the domain that addresses the combination of
perception, reasoning, action, learning and interaction with the environment, as well as charac-
teristics such as distribution, coordination, cooperation, autonomy, interaction and integration.
Key concepts related to our study and belonging to this domain are: (i) intelligent agent, an en-
tity equipped with sensors and actuators that exhibits some form of intelligence in its action and
thought [87], (ii) q-learning, a reinforcement learning algorithm (see Section 2.1.3), which provides
agents with the capability of learning to act optimally in Markovian domains by experiencing
the consequences of actions, without requiring them to build maps of the domains [102], and
(iii) swarm intelligence, which refers to the algorithms typically based on a population of simple
agents interacting locally with one another and with their environment [42].
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For completeness, we remark that the reference AI Watch taxonomy includes two—unrelated
to this study—additional transversal domains, namely, Services and Ethics and Philosophy. Where,
the first domain includes all forms of infrastructure, software and platform provided as services or
applications, and the second is related to important issues regarding the impact of AI technologies
in our society.

2.2 Software Testing

ST is defined by the 29119-1-2013 ISO/IEC/IEEE International Standard as a process made by a set
of interrelated or interacting activities aimed at providing two types of confirmations: verification
and validation [34]. Verification is a confirmation that specified requirements have been fulfilled
in a given software product (a.k.a., work item or test item), whereas validation demonstrates that
the work item can be adopted by the users for their specific tasks. The main objective of ST is to
assess the absence of faults, errors, or failures in the test items. Among the great number of tax-
onomies proposed in the literature for describing the different and heterogeneous aspects of the ST
research area, in this work, we refer to the unified view proposed by Software Engineering Body
of Knowledge (SWEBOK) [18]. The SWEBOK is a guide to the broad scope of software engineer-
ing. Its core is a tested and proven knowledge base that has been developed and continues to be
updated frequently, through practices that have been documented, reviewed, and discussed by the
software engineering community. Even more precisely, in this article, we refer to dynamic testing
that comprises the activities that are performed to assess whether a software product works as
expected when it is executed [34]. The ST taxonomy is shown in Figure 7, where, the white boxes
represent ST domains and key concepts drawn from the SWEBOK [18], while the gray boxes are
additional key concepts extracted from the analyzed secondary studies during the mapping pro-
cess and missing in the SWEBOK. In the remainder of this section, we provide a short description
for each domain and key concept of the taxonomy. Moreover, we indicated one or more references
for the key concepts that are not described in the SWEBOK.

2.2.1 Test Target. The ST domain that defines the possible objects of the testing. The target can
vary from a single module to an integration of such modules (related by purpose, use, behavior,
or structure) and an entire system. In this domain, we recognized three relevant fields: (i) Unit
Testing, which verifies the correct behavior, in isolation, of software elements that are separately
testable; (ii) Integration Testing, which is intended to verify the correct interactions among software
components; and (iii) System Testing, which is concerned with checking the expected behavior of
an entire system.

2.2.2 Testing Objective. The ST domain defining the purpose of a testing process. Test cases can
be designed to check that the functional specifications are correctly implemented. This objective
is also defined in literature as conformance testing, correctness testing, functional testing, or fea-
ture testing [11]. However, in Non-functional Testing, several other nonfunctional properties may
be verified as well, including reliability, usability, safety, and security, among many others quality
characteristics such as compatibility [30] and quality of service (QoS) [1]. Other possible testing
objectives are the following ones: (i) Acceptance Testing, which determines whether a system sat-
isfies its acceptance criteria, usually by checking desired system behaviors against the customer’s
requirements; (ii) Regression Testing, which, according to [33], is “...selective retesting of a system
or component to verify that modifications have not caused unintended effects and that the system or
component still complies with its specified requirements..” ; (iii) Stress Testing, which exercises the
software at the maximum design load with the goal of determining the behavioral limits, and to
test defense mechanisms in critical systems; (iv) structural testing, whose target is to cover the
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internal structure of the system source code or model [89]; and (v) GUI Testing, which focuses on
detecting faults related to the Graphical User Interface (GUI) and its code [89].

2.2.3 Testing Technique. The ST domain dealing with the detection of as many failures as pos-
sible. Testing techniques have the main goal of identifying inputs that produce representative
program behaviors and assessing whether these behaviors are expected or not in comparison to
specific oracles. Testing techniques have been classified on the basis of how they design or generate
test cases. Possible testing techniques are described as follows: (i) Combinatorial Testing, where test
cases are derived by combining interesting values for every pair of a set of input variables instead
of considering all possible combinations; (ii) Mutation Testing, which uses mutants, i.e., mutated
versions of the source code under test, as test goals to create or improve test suites; (iii) Random
Testing, which generates tests purely at random; (iv) Model-based Testing, which is used to validate
requirements, check their consistency, and generate test cases focused on the behavioral aspects
of the software. The software under test is usually represented in a formal or semi-formal way by
means of models; (v) Equivalence Partitioning Testing, which involves the partitioning of the input
domain into a collection of subsets (or equivalent classes) based on a specified criterion or relation;
(vi) Requirement-based Testing, which extracts test cases from requirements in any (partially) auto-
mated way [35]; (vii) Concolic Testing employs the symbolic execution of a program paired with its
actual execution [11]; (viii) Metamorphic-based Testing, which uses metamorphic relationships for
the test oracles definition [32]; (ix) Concurrency Testing, where tests are generated for verifying the
behavior of concurrent systems [2]; and (x) Statistical Testing, where the test cases are generated
starting from statistical models such as Markov Chains [12].

2.2.4 Testing Activity. The ST domain that outlines the activities that can be performed by
testers and testing teams into well-defined controlled processes. Such activities vary from test
planning to test output evaluation, in such a way as to provide assurance that the test objectives
are met in a cost-effective way. Well-known testing activities presented in the literature are the
ones presented in the following of this section. (i) Test Case Generation whose goal is to gener-
ate executable test cases based on the level of testing to be performed and the particular testing
techniques. (ii) Test Planning is a fundamental activity of the ST process, its includes the coor-
dination of personnel, availability of test facilities and equipment, creation and maintenance of
all test-related documentation, and planning for the execution of other testing activities. (iii) Test
Logs Reporting is used to identify when a test was conducted, who performed the test, what soft-
ware configuration was used, and other relevant information to identify or reproduce unexpected
or incorrect test results. (iv) Defect Tracking is the activity where the defects can be tracked and
analyzed to determine when they were introduced into the software, why they were created (for
example, poorly defined requirements, incorrect variable declaration, memory leak, programming
syntax error), and when they could have been first observed in the software. (v) Test Results Eval-
uation is performed to determine whether the testing has been successfully executed. In most
cases, “successful” means that the software performed as expected and did not have any major
unexpected outcomes. Not all unexpected outcomes are necessarily faults, but are sometimes de-
termined to be simply noise. Before a fault can be removed, an analysis and debugging effort is
needed to isolate, identify, and describe it. (vi) Test Execution represents both the execution of test
cases and the recording of the results of those test runs. Execution of tests should embody a basic
principle of scientific experimentation: everything done during testing should be performed and
documented clearly enough that another person could replicate the results. (vii) Test Environment
Development regards the implementation of the environment that is used for testing. It should be
guaranteed that the environment is compatible with the other software engineering tools adopted
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during the testing process. It should facilitate the development and control of test cases, as well
as the logging and recovery of expected results, scripts, and other testing materials. (viii) Test Ora-
cle Definition is the activity performed either to generate automatically or to support the creation
of test oracles [32]. (ix) Test Case Design and Specification is executed to design or to specify the
testing cases. This activity usually starts from the analysis of the requirements of the system un-
der test [30, 35]. (x) Test Case Optimization/ Prioritization/Selection is performed for the optimized
reduction or prioritization or selection of test cases to be executed [43]. (xi) Test Data Definition,
a.k.a. test data generation, is the activity where the data for test cases are produced [98]. (xii) Test
Repair is, in essence, a maintenance activity. Within the course of this activity, test scripts are
adjusted to changed conditions. The need for it lies in the fact that test scripts are fragile and vul-
nerable to the changes introduced by developers in a newer version of the tested software [98].
(xiii) Flaky Test Prediction is the activity where the tests expressing similar characteristics are iden-
tified and repaired. This activity significantly improves the overall stability and reliability of the
tests [98]. A flaky test is considered as such when it reports false positive or false negative test
result, or when adjustment was made to the test scripts and/or to the code of the system under
test. (xiv) Test Costs Estimation has the main goal to predict the testing costs, mainly the testing
time [30].

2.2.5 Software Testing Fundamentals. The ST domain that covers the Testing Related Terminol-
ogy, such as basic definitions, basic terminology and key issues, and relationships between software
testing and other software engineering activities.

3 TERTIARY SYSTEMATIC MAPPING PROTOCOL

In this section, we describe the research protocol adopted to conduct our tertiary systematic
mapping study. The protocol was designed following the guidelines proposed by Petersen et al.
[77] to fulfill the requirements of a structured process, whose execution details are provided in
Section 4. Specifically, the protocol includes the following steps: (i) definition of goals and research
questions, (ii) definition of the search string, (iii) selection of electronic databases, (iv) definition
of inclusion and exclusion criteria, (v) definition of quality assessment criteria, and (vi) design of
the data extraction form. We describe in detail each of these steps and their outcomes in the rest
of this section.

3.1 Goal and Research Questions

The goal of our study is to understand how AI has been applied to support ST. To reach this goal,
we defined nine research questions (RQs) grouped into two categories publication space and re-
search space questions (as suggested by [77]). Publication space questions aim at characterizing the
bibliographic information (i.e., venue, year of publication, authors’ affiliation, etc.) of the identified
sources (i.e., secondary studies). Research space questions aim at providing the answers needed to
achieve the research goal.

Publication Space (PS) RQs. We defined the following five publication space research ques-
tions:

PS-RQ1: How many secondary studies have been identified per publication year?
PS-RQ2: Which types of secondary studies have been executed?
PS-RQ3: What are the venues where the secondary studies have been published?
PS-RQ4: What are the authors’ affiliation countries of the selected secondary studies?
PS-RQ5: What is the amount of primary studies analyzed by the selected secondary studies and

how are they distributed over time?
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Table 1. PICOC Main Terms and their Synonyms

View Point Main Term Synonyms

Population Software Testing Based Testing, Dynamic Testing, Static Testing, Test Oracle, Test
Design, Test Execution, Test Report, Test Plan, Test Automation,
Automated Test, Test Case, Bug Detection, Fault Detection, Error
Detection, Failure Detection.

Intervention Artificial Intelligence AI, Linguistic, Computer Vision, Recommend System, Decision
Support, Expert System, NLP, Natural Language Processing, Data
Mining, Information Mining, Text mining, Learning, Supervised,
Unsupervised, Rule-based, Training, Decision Tree, Neural
Network, Bayesian network, Clustering, Genetic Programming,
Genetic Algorithm, Evolutionary Programming, Evolutionary
Algorithm, Evolutionary Computation, Ensemble Method,
Search-based, Intelligent Agent, Naive Bayes, Ontology, Random
Forest, Reasoning, SVM, Support Vector, Activation Function,
Autoencoder, Backpropagation, Boosting, Cross-validation, Ground
Truth, Ant Colony, Bee Colony, Particle Swarm, Robotics, Planning.

Comparison N.A.
Outcome N.A.
Context Secondary Study Survey, Mapping, Review, Literature Analysis

Research Space (RS) RQs. We defined the following four research space research questions:

RS-RQ1: What AI domains have been applied to support ST?
RS-RQ2: What domains of ST have been supported by AI?
RS-RQ3: Which ST domains have been supported by which AI domains, and how?
RS-RQ4: What are the future research directions of AI in ST?

3.2 Search String Definition

To systematically define the search string to be used for finding secondary studies of interest,
we adopted the PICOC (Population, Intervention, Comparison, Outcome, and Context) criteria as
suggested in Petersen et al. [77]. The main term of each of the PICOC view points are described
in the following:

• Population: We identified Software Testing as the main term of this view point, since it is the
domain of interest of our study.
• Intervention: We identified Artificial Intelligence as the main term of this view point, since

our research questions are aimed at investigating how this science has been applied to the
population.
• Comparison: This view point is not applicable in a systematic mapping study, since no effect

of the intervention on the population can be expected.
• Outcome: this view point is not applicable in a systematic mapping study, since no effect of

the intervention on the population can be expected.
• Context: We identified Secondary Study as main term of this view point, since it is the context

where we expect to find sources.

To identify the keywords of the search string, we followed the general approach as suggested by
Kitchenham and Charters [52]. Hence, we performed a break down of our research questions (see
Section 3.1) into individual facets (one for each PICOC view point). Then, we generated a list of
synonyms, abbreviations, and alternative spellings. Additional terms were obtained by considering
subject headings used in journals and scientific databases. The main terms and the synonyms we
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inferred for the PICOC view points are shown in Table 1. Finally, the search string was obtained
by the conjunction (AND) of disjunction (OR) predicates, each built on the main term and the
corresponding synonyms of a PICOC view point. Moreover, as suggested by the Kitchenham [52]
and Petersen [77] guidelines, we checked our search string against four selected control papers
(Garousi et al. [35], Trudova. et al. [98], Catal [22], and Durelli et al. [30]).4 The resulting search
string is shown in Box 1.

(“Software Test*” OR “*Based Test*” OR “Dynamic Test*” OR “Static Test*” OR “Test* Oracle*” OR “Test* Design”
OR “Test* Execution” OR “Test* Report*” OR “Test* Plan*” OR “Test* Autom*” OR “Autom* Test*” OR “Test Case*”
OR “Bug Detection” OR “Fault Detection” OR “Error Detection” OR “Failure Detection”) AND ((ai OR “Artificial
Intelligence” OR linguistic OR “computer vision” OR “recommend* system*” OR “decision support” OR “expert sys-
tem*” OR “NLP” OR “natural language processing” OR “data mining” OR “information mining” OR “text mining”
OR “* learning”) OR (“supervised” OR “unsupervised” OR “rule-based” OR “training” OR “decision tree*” OR “neural
network*” OR “bayesian network*” OR “clustering” OR “genetic programming” OR “genetic algorithm*” OR “evolu-
tionary programming” OR “evolutionary algorithm*” OR “evolutionary computation” OR “ensemble method*” OR

“search-based” OR “intelligent agent*” OR “naive bayes” OR “ontolog*” OR “random forest*” OR “reasoning” OR

“SVM*” OR “support vector” OR “activation function*” OR “autoencoder*” OR “backpropagation” OR “boosting”
OR “cross-validation” OR “ground truth” OR “ant colony” OR “bee colony” OR “particle swarm” OR robotics OR

planning)) AND (survey OR mapping OR review OR “secondary study” OR “literature analysis”)

Box 1. Resulting search string.

3.3 Digital Libraries Selection

To retrieve candidate studies, we selected four of the most well-known digital libraries usually
adopted for conducting literature review and mapping studies [4]. The digital libraries adopted
in this study are: ACM Digital Library,5 IEEE Xplore,6 Web of Science,7 and Scopus.8 We adapted
the search string to accommodate to the syntax required by each digital library search engine,
hence we built four queries that apply our search string to the title and abstract attributes.
Additionally, for Scopus and Web of Science, we limited the results to the computer science and
computer engineering categories. Since the ACM Digital Library and the IEEE Xplore gather
publications within computer science and computer engineering no restrictions have been applied
in the corresponding queries.

3.4 Inclusion and Exclusion Criteria Definition

To support the selection of retrieved secondary studies, we defined exclusion and inclusion criteria.
When defining these criteria, we acknowledged our complementary skills in AI and ST. Therefore,
as we will mention in Section 4, we defined these criteria with the outright intention that its
application would be supported by classifiers with the required skills to properly apply the criteria
in the context of the expertise of each of our fields.

Exclusion Criteria (EC). We excluded a publication if at least one of the following 6 EC applies:

(EC1) The study focuses on the testing of AI-based software systems rather than the applica-
tion of AI to ST.

4Control papers are used to calibrate the search string by representing, to the best of the research team’s knowledge,
the characteristics of the “ideal” type of research publication that the team is looking for. Both the Kitchenham [52] and
Petersen [77] guidelines highlight the need to check trial search strings against a list of already known studies. We used
the Scopus digital library for the search string validation.
5http://dl.acm.org/
6http://ieeexplore.ieee.org/
7https://www.webofknowledge.com/
8http://www.scopus.com/
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Table 2. Quality Assessment Criteria

Criteria Yes (+1.0) Partly (+0.5) No (+0.0)

QC1: were there explicit
research questions?

Source presents the research
questions, and these guide
the secondary study through
the application of PICOC (or
a variation)

Source present the research
questions, and it guides the
secondary study without a
formal mapping to the
search strategy

Source does not present
research questions that
guide the secondary study

QC2: were inclusion and
exclusion criteria reported?

Inclusion and exclusion
criteria are explicitly defined

Implicit inclusion/exclusion
criteria

Inclusion and exclusion
criteria are not defined and
cannot be inferred

QC3: was the search
strategy adequate?

Searched in 4 or more digital
libraries and included
additional search strategies

Searched in 3 or 4 digital
libraries with no extra
search strategies

Searched up to 2 digital
libraries

QC4: was the quality of the
included studies assessed?

Quality criteria explicitly
defined and extracted for
each secondary study

Quality issues of primary
studies addressed by
research questions

No explicit quality
assessment

QC5: were there sufficient
details about the individual
included studies presented?

Each primary study can
clearly be traced from the
information provided.

Only summary information
is provided for each
individual study.

Results of individual studies
are neither specified nor
summarized.

QC6: were the included
studies synthesized?

Data was extracted,
summarized and interpreted.

Data was extracted and
summarized but not
interpreted.

Data was not summarized
nor interpreted.

(EC2) The study focuses on the application of AI for either the prediction or the analysis, or
the localization of: (i) errors; (ii) faults; (iii) bugs; or (iv) failures.

(EC3) The study is a duplicate of another candidate paper.
(EC4) The study does not provide substantially different contribution compared to another

candidate work written by the same authors.
(EC5) The study has another candidate paper, written by the same authors, which is an ex-

tended version of it.
(EC6) The study is a tertiary systematic mapping.

We remark that, to apply EC2, we took special attention to confirm that the source shares our
focus on dynamic testing. In particular, we are looking to exclude studies (systematic mapping or
reviews) that are not focused on the design and execution of test cases.

Inclusion Criteria (IC). We included a publication i.i.f. all the following 4 IC apply:

(IC1) The study is a secondary study.
(IC2) The study addresses the topic of AI applied to ST.
(IC3) The study is a peer-reviewed paper.
(IC4) The study is written in English.

3.5 Quality Assessment Criteria Definition (QC)

To filter-out low quality publications, we scored each candidate paper according to a list of six
quality assessment criteria inspired by Kitchenham et al. [53]. We report in Table 2 such QCs
along with the rationale we adopted to assign a score ∈ {0.0, 0.5, 1.0} to each paper. We evaluate
the overall quality of a candidate by summing up the six QC scores and excluding those papers
reaching an overall score lower than 3.0.

3.6 Data Extraction Form Design

To support the data extraction process, we designed the data extraction form reported in Table 3.
This form was used to report the pieces of evidence—extracted from the selected papers—that will
be analyzed to answer the RQs.
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Table 3. Data Extraction form

Publication Space

ID Field Description of the extracted data RQ

1 Title Title of the secondary study –
2 Abstract Abstract of the secondary study –
3 Authors Authors list of the secondary study –
4 Year Publication year of the secondary study PS-RQ1
5 Study Type Type of secondary study, i.e., SM, Review, SLR, Multivocal PS-RQ2
6 Venue Name of the venue where the secondary study was published PS-RQ3
7 Venue Type Type of the venue where the secondary study was published PS-RQ3
8 Institutions Authors’ Institutions list of the secondary study PS-RQ4
9 Primary Studies List of primary studies reviewed by the secondary study PS-RQ5

Research Space

ID Field Description of the extracted data RQ

10 AI Space List of extracted sentences on AI domain concepts RS-RQ1
11 ST Space List of extracted sentences on ST domain concepts RS-RQ2
12 AI applied to ST Space List of extracted sentences on AI applied to ST RS-RQ3
13 Future Directions Space List of extracted sentences on future directions in AI applied to ST RS-RQ4

In this table, we enumerate and describe the fields composing the data extraction forms for the PS and RS RQs.

The form includes a list of fields organized in two sections, one dedicated to the publication
space RQs and the other dedicated to the research space RQs. For each field, we provide a name,
a brief description of the data that the field is meant to collect, and the RQ for which the field is
used for.

4 TERTIARY SYSTEMATIC MAPPING EXECUTION

In this section, we describe the execution of the tertiary systematic mapping study we conducted
with the protocol that we introduced in Section 3. Specifically, in Section 4.1, we provide details
about the selection process while, in Section 4.2, we provide details about the data extraction
process.

4.1 Selection Process Execution

The process followed to select secondary studies is shown in Figure 1. The figure provides a repre-
sentation of the executed steps and their outcomes. The selection process is based on the execution
of the two stages described in the following. The full selection process was executed on June 2021
and repeated on May 2022 to ensure that we did not miss any recent secondary study on the
investigated topic.

4.1.1 First Stage. This stage was executed to select a preliminary set of secondary studies and
relies on the sequential execution of the following four steps:

(1) Secondary studies retrieval from the digital libraries: In this step, the queries (introduced in
Section 3.3) were submitted to the four digital libraries reported in Section 3.3.9 As a result,
877 secondary studies were retrieved.

(2) EC and IC application to title, abstract, and keywords: The 877 papers were divided into two
groups. The title, abstract, and keywords of the secondary studies in each group were ana-
lyzed by two researchers—one AI expert and one ST specialist—to apply IC and EC presented
in Section 3.4. At the end of this step, 806 studies were excluded, since both researchers

9No time limits were considered in the search.
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Fig. 1. Diagram of the secondary studies selection process execution.

reached the same consensus to remove them. The remaining 71 papers were included and
passed to the next step.

(3) EC and IC application to full text: The 71 papers were divided into two groups and the full
text of each paper was read by two researchers—an AI expert and an ST specialist—to apply
again the IC and EC. In the end, 29 studies were excluded, 32 were included, and 10 pa-
pers were labeled as a “doubt.” All doubts came from studies for which no agreement was
reached.

(4) Dealing with secondary studies classified “doubt” : Two additional researchers—one AI expert
and one ST specialist—were involved to reach an agreement on “doubt” papers. To this aim,
all four researchers performed an additional discussion based on the papers’ full read and
analysis. At the end of the discussion, 4 studies were excluded whereas the remaining 6 were
selected. As a consequence, the final set of selected papers included 38 studies.

4.1.2 Second Stage. This stage refers to a snowballing process [104] that was conducted as a
complementary search strategy to mitigate the threat of missing literature. As shown in Figure 1
the stage relies on the execution of six sequential steps, three of which (i.e., steps 2, 3, and 4) involve
the same steps that we described in the first stage.

(1) Secondary studies retrieval by backward and forward snowballing: In this automatic step, 296
secondary studies were retrieved by applying backward and forward snowballing to the
63 papers selected in the First selection (title, abstract and keywords) step of the First stage.
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Specifically, for the backward snowballing, we collected all studies cited by the 63 papers
using their references. For the forward snowballing, we used Google Scholar10 instead of the
four digital libraries already exploited in the first stage, as it allowed us to fully automate
the retrieval of papers citing one or more of the 63 papers.

(2) EC and IC application to title, abstract and keywords: As a result of this step, 277 secondary
studies were excluded by applying IC and EC. We remark that, to apply the EC3, we needed,
as input to this step, the 63 papers selected in the EC and IC application to title, abstract and
keywords) step of the First stage of the process. As a result, 19 papers were included for full
reading in the following selection steps.

(3) EC and IC application to full text: In this step, among the 19 secondary studies, 11 were
excluded, five were included, and the remaining three papers were labeled as “doubt” and
needed an extra analysis.

(4) Solving “doubt” secondary studies: Among the three papers labeled as “doubt,” two were ex-
cluded, and the other one was included. As a consequence, six secondary studies were ob-
tained by snowballing.

(5) Merge: The papers selected in the two stages were merged to define a set of 44 candidate
secondary studies.

(6) Quality Assessment: In this step, each paper was analyzed by one of the researchers who
scored the source according to the six quality criteria described in Section 3.4. The studies
with a quality score lower than 3 were excluded. Borderline papers, i.e., papers with a qual-
ity score between 2 and 4, were discussed by all the researchers. As a result of the quality
assessment (see Table 4 ), 20 secondary studies were included into the final set of selected
papers.

Hereafter, we refer to each selected paper following the identifier (i.e., F1, F2, . . . , F20) provided
in Table 4 at column ID.

4.2 Data Extraction Execution

Since our RQs (see Section 3.1) cross two different research areas, we divided the authors into
two groups, each containing an AI expert and an ST specialist. The two members of each group
collaborated in the extraction of the pieces of evidence from each of the 20 selected studies using
the extraction form shown in Table 3. Finally, to reach a large consensus, the two groups shared
the extracted pieces of evidence and discussed the differences.

5 DATA ANALYSIS

In this section, we describe the results of the analysis performed on the extracted data (see
Section 4.2) to answer our RQs (see Section 3.1). Specifically, in Section 5.1, we provide the an-
swers to our PS-RQs, while in Section 5.2 to our RS-RQs.

5.1 Publication Space Research Questions—Results

In the following sections, we answer the five PS-RQs of this study.

5.1.1 PS-RQ1. How many secondary studies have been identified per publication year? To reply to
the first publication space question, we depicted in Figure 2 the distribution of selected secondary
studies per publication year. As shown in Figure 2, 2009 is the first year for which we selected
a secondary study. Most of the selected secondary studies (75%) were published in the past six

10https://scholar.google.com/
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Table 4. Quality Assessment Results

ID Secondary Study Title QC1 QC2 QC3 QC4 QC5 QC6 QS

F1 A systematic mapping addressing Hyper-Heuristics within Search-based Software
Testing [11]

1 1 1 0.5 1 1 5.5

F2 NLP-assisted software testing: A systematic mapping of the literature [35] 1 1 1 0.5 1 1 5.5
F3 Analyzing and documenting the systematic review results of software testing

ontologies [96]
1 1 1 1 1 1 6

F4 A systematic literature review on semantic web enabled software testing [25] 1 1 1 1 1 1 6
F5 Artificial intelligence in software test automation: A systematic literature review

[98]
1 1 1 1 1 1 6

F6 On the application of genetic algorithms for test case prioritization: A systematic
literature review [22]

0.5 1 1 0.5 0.5 0.5 4

F7 A systematic review of search-based testing for non-functional system properties [1] 1 0.5 1 0.5 1 1 5
F8 Systematic Literature Review on Search-based mutation testing [43] 1 0 1 0 0.5 0.5 3
F9 The experimental applications of search-based techniques for model-based testing:

Taxonomy and systematic literature review [89]
0.5 1 1 0 0.5 1 4

F10 A systematic review on search-based mutation testing [94] 1 1 1 0 1 1 5
F11 A systematic review of the application and empirical investigation of search-based

test case generation [3]
1 1 1 0.5 0.5 1 5

F12 Machine learning applied to software testing: A systematic mapping study [30] 0.5 1 1 0 1 0.5 4
F13 Using Genetic Algorithms in Test Data Generation: A Critical Systematic Mapping

[81]
0.5 1 1 0 1 1 4.5

F14 Ontologies in software testing: A Systematic Literature Review [28] 0.5 1 1 0 1 1 4.5
F15 A comprehensive investigation of natural language processing techniques and tools

to generate automated test cases [2]
0.5 1 0.5 1 1 1 5

F16 Search-based Higher Order Mutation Testing: A Mapping Study [57] 1 1 0.5 0.5 0 0 3
F17 Trend Application of Machine Learning in Test Case Prioritization: A Review on

Techniques [50]
1 1 0 1 0.5 0.5 4

F18 Using machine learning to generate test oracles: A systematic literature review [32] 1 0 0.5 0 0.5 1 3
F19 Test case selection and prioritization using machine learning: a systematic literature

review [74]
1 1 1 0 1 1 5

F20 A Systematic Literature Review on prioritizing software test cases using Markov
chains [12]

1 1 1 0 1 1 5

A survey on regression testing using nature-inspired approaches [9] 0 0 0 0 0.5 0.5 1
The Generation of Optimized Test Data: Preliminary Analysis of a Systematic
Mapping Study [100]

0.5 0 0.5 0 0.5 0.5 2

Artificial Intelligence Applied to Software Testing: A Literature Review [58] 0 0 0.5 0 0.5 0.5 1,5
Use of Evolutionary Algorithm in Regression Test Case Prioritization: A Review [76] 0.5 0 0 0 0.5 0 1
An extensive evaluation of search-based software testing: a review [48] 0.5 0 1 0 0 0.5 2
Integration of properties of virtual reality, artificial neural networks, and artificial
intelligence in the automation of software tests: A review [91]

0.5 0 0 0 0.5 0.5 1,5

A Systematic Literature Review of Test Case Prioritization Using Genetic
Algorithms [10]

0 0 0 0 0.5 0 0.5

A critical review on automated test case generation for conducting combinatorial
testing using particle swarm optimization [79]

0 0 0 0 1 1 2

A systematic review of software testing using evolutionary techniques [68] 0 0 0 0 1 1 2
Evolutionary algorithms for path coverage test data generation and optimization: A
review [67]

0 0 0 0 1 1 2

Search-based secure software testing: A survey [49] 1 0 0 0 0 0 1
Multi-objective test case minimization using evolutionary algorithms: A review
[101]

0 0 0 0 1 1 2

Literature survey of Ant Colony Optimization in software testing [95] 0 0 0 0 0 0.5 0.5
Heuristic search-based approach for automated test data generation: A survey [60] 0.5 0 1 0 0.5 0.5 2,5
Soft computing-based software test cases optimization: A survey [92] 0 0 0 0 0.5 0 0.5
Bayesian concepts in software testing: An initial review [82] 0.5 0.5 1 0 0 0.5 2,5
Search-based techniques and mutation analysis in automatic test case generation: A
survey [26]

0 0 0 0 1 0.5 1,5

A Survey on Testing software through genetic algorithm [23] 0 0 0 0 1 1 2
Evolutionary software engineering, a review [63] 0 0 0 0 1 0.5 1,5
Search-based software test data generation: A survey [65] 0 0 0 0 0.5 0.5 1
Nature-inspired approaches to test suite minimization for regression testing [8] 1 0 0 0 0.5 0 1,5
Review of search-based techniques in software testing [83] 0 0 0 0 0 0 0
Object-Oriented Evolutionary Testing: A Review of Evolutionary Approaches to the
Generation of Test Data for Object-Oriented Software [71]

0 0 0 0 0 0 0

A systematic review of agent-based test case generation for regression testing [5] 1 0.5 0.5 0 0 0 2

For each paper, we report the corresponding quality scores.
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Fig. 2. Distribution of secondary studies per publication year and type.

years (2017 to 2022), thus showing an increasing interest in the research community in conducting
secondary studies about the application of AI in ST.

5.1.2 PS-RQ2. Which types of secondary studies have been executed? The second PS-RQ is about
the types of selected secondary studies. For each study, we report in Figure 2 the corresponding
type, i.e., either Systematic Literature Review (SLR) in light green color or Systematic Literature
Mapping (SLM) in blue color. We followed the guidelines defined by Kitchenham and Charters
[52] to verify whether a secondary study was correctly classified as SLR or SLM by its authors,
and changed the classification when needed. For instance, F14 and F15 were originally classified
as SLRs by their authors. After a careful analysis, we opted to classify them as SLMs, since the
authors: (i) did not perform a quality assessment of selected primary studies; (ii) summarized the
selected works without executing a meta-analysis. From the data presented in Figure 2, we can
observe that our selection includes 10 (50%) SLRs and 10 (50%) SLMs.

5.1.3 PS-RQ3. What are the venues where the secondary studies have been published? The third
PS-RQ aims to analyze the venues where the selected secondary studies have been published.
Table 5 reports the type, name, and rank (Scimago Journal & Country Rank—SJR quartile11 for
journal papers and Computing Research and Education—CORE rank12 for conference papers) of
the venues of the 20 selected secondary studies. The table shows that 14 (70%) studies were pub-
lished in journals and the remaining 6 studies (30%) were part of the proceedings of conferences,
workshops, symposiums, or seminars. It is worth observing that 13 of the 14 journal papers have
been published in top-ranked venues (according to the SJR quartile in which the venue is classi-
fied), with 6 of them published in the Information and Software Technology Journal.13 Thus, from
our selection, we can derive that the topic of AI applied to ST is largely covered by top-ranked
journals.

5.1.4 PS-RQ4. What are the authors’ affiliation countries of the selected secondary studies? The
fourth PS-RQ is aimed at analyzing the countries of affiliation of the authors of the selected studies.

11https://www.scimagojr.com/
12http://portal.core.edu.au/conf-ranks/
13https://www.journals.elsevier.com/information-and-software-technology
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Table 5. Secondary Studies Per Venues’ Types and Names

Venue Type Venue Name SJR Quartile CORE Rank Study ID

Journal

Information and Software Technology Q1 F1, F2, F3, F7, F10, F20
ACM Computing Surveys Q1 F13
Applied Soft Computing Q1 F9
e-Informatica Software Engineering Journal Q3 F8
Empirical Software Engineering Q1 F19
IEEE Access Q1 F17
IEEE Transactions on Reliability Q1 F12
IEEE Transactions on Software Engineering Q1 F11
Journal of Systems and Software Q1 F4

Conference

Brazilian Symposium on Systematic and Automated Software Testing Not Available F16
International Conference on Evaluation of Novel Approaches to Software Engineering B F5
International Conference on Internet of things, Data and Cloud Computing C F15
International Workshop on Evidential Assessment of Software Technologies Not Available F6
International Workshop on Test Oracles Not Available F18
Seminar on Ontology Research in Brazil Not Available F14

Among the 20 selected studies, we found 68 different authors, with 5 authors (i.e., Érica Ferreira de
Souza, Juliana Marino Balera, Lionel C. Briand, Nandamudi Lankalapalli Vijaykumar, and Juliana
Marino Balera) involved in two studies each. We analyzed the countries of affiliations of these 68
authors, resulting in 16 unique affiliation countries. Since three authors reported a second affili-
ation country and five authors were involved in two different studies, we counted a total of 76
affiliations. Most of the selected studies have authors with affiliations from only one country, ex-
cept studies F1 [11] (Brazil and UK), F2 [35] (Austria and Northern Ireland), and F3 [96] (Argentina
and Uruguay), which included authors with affiliations from two different countries each. Figure 3
shows a world map of the authors’ affiliation countries, with each color representing a different
value for the number of affiliations. In particular, 27 (35.53%) affiliations are counted for Brazil,
10 (13.16%) for Malaysia, 6 (7.89%) for Sweden, 4 (5.26%) for Argentina, Canada, Norway, and Pak-
istan, each, 3 (3.95%) for the Czech Republic, India, and Iran each, 2 (2.63%) for Austria, United
Kingdom, and Uruguay each, and 1 (1.32%) for Luxembourg and Turkey, each. From the extracted
data, we can observe that most of the affiliations (33 over 76) are located in South America (Brazil,
Argentina, and Uruguay). Interestingly, affiliation countries that typically dominate in computer
science or computer engineering (e.g., USA and China) do not occur in our observations.14

5.1.5 PS-RQ5. What is the amount of primary studies analyzed by the selected secondary studies,

and how are they distributed over time? The goal of this RQ is twofold: (i) to compute the number of
primary studies that have been reviewed by the selected secondary studies and (ii) to understand
how these primary studies are distributed over the publication years. Figure 4 shows, for each
selected secondary study, the number of reviewed primary studies and how many of these studies
are unique, i.e., works that have not been reviewed by any other secondary study. Looking at the
figure, it shows that the 20 selected secondary studies analyzed a total of 807 primary studies, of
which 710 (87.98%) were unique. Figure 5 shows the distribution of the unique primary studies per
publication year. The figure shows that the reviewed 710 unique primary studies cover a period
of 27 years, going from 1995 to 2021; 444 (62.5%) of these studies have been published in the past
10 years and 264 (37.18%) from 2015 to 2021. Primary studies that were “unique” in any of the older
secondary studies could, in theory, have been found by the newer secondary studies. However, the
publication date of a primary study would be just one of the factors that may lead it to be included
in only one of the secondary studies. In addition, the search protocols for secondary studies also
vary greatly in the choice of search strings and inclusion and exclusion criteria, leading to the
great diversity of primary studies selected. The large amount of unique primary studies reviewed

14https://www.natureindex.com/annual-tables/2021/country/all
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Fig. 3. World map of the authors’ affiliation countries.

by the selected secondary studies15 and their distribution over time leads us to two interesting
observations. First, we can state that our set of secondary studies is representative of the research
conducted on the topic of AI applied to ST. Moreover, as will be confirmed by RS-RQ1 and RS-
RQ2 (see Sections 5.2.1 and 5.2.2) the set of unique primary studies reviewed by these works is
a significant sample of primary studies covering broad aspects of AI in ST. Second, we can infer
that the topic of AI applied to ST is of interest to the research community and that the interest has
grown over the past decade. Finally, it is worth observing that the research topic of AI applied to
ST is not new for the research community, indeed the first 19 (2.67%) primary studies in this field
date from the late 1990s.

5.2 Research Space Research Questions—Results

In the following sections, we answer the four RS-RQs of our study.

5.2.1 RS-RQ1. What AI domains have been applied to support ST? To identify the AI domains
from which solutions were applied to support ST, we analyzed the list of sentences about the
applied AI domains that were extracted from our sources during the data extraction process with
reference to the taxonomy introduced in Section 2.1. As a result of this analysis, in Figure 6, we
report, for each AI domain concept, the list of secondary studies in which we found evidence of its
application in ST. The most important findings we can derive from Figure 6 follow: (1) most of the
secondary studies (11 of 20) investigated the application of AI solutions (i.e., algorithms, models,
methods, techniques, etc.) belonging to the Planning and Scheduling / Searching / Optimization sub-
domains to ST. Specifically, most surveyed AI solutions belonging to this domain are: evolutionary
algorithms, genetic algorithms, and metaheuristic optimisation; (2) 9 of 20 secondary studies focused
on the application of Machine learning solutions. In particular, F12 [30] and F5 [98] covered almost
all the concepts in this AI domain; (3) 6 of 20 secondary studies surveyed the support provided by

15We can assume that 710 is only a part of the primary works in the literature on the subject, and thus that the number of
published primary studies is even higher.
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Fig. 4. Primary studies selected by each secondary study (including repeated primary studies).

Fig. 5. Distribution of unique primary studies per publication year.

Knowledge representation/Automated reasoning/Common sense reasoning AI solutions. Specifically,
most of these studies analyzed the use of ontologies and F4 [25] is the study that surveyed the
use of most of the concepts in this AI domain; (4) few secondary studies surveyed works on the
application of Natural language processing (5 of 20), Multi-agents systems (3 of 20), and Computer
vision (1 of 20). It is worth noticing that, within the Natural language processing domain, the most
surveyed applications are based on text mining, while only one study surveyed applications of
word embeddings. Notably, only one of the secondary studies analyzed the use of image processing
techniques belonging to Computer vision.

By analyzing the publication years of the selected studies (see Figure 2), we can observe that most
of the works (6 of 9) surveying the application of machine learning to ST have been published very
recently (2020 or later). This indicates a growing interest in this AI domain. Similarly, 4 of 5 studies
investigating the use of Natural language processing have been published after 2020, highlighting
the timeliness of this research field, with a special focus on text mining and word embedding.
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Fig. 6. The resulting excerpt taxonomy of AI supporting ST, built starting from the EU AI Watch report. Gray

boxes represent key concepts not explicitly included in the AI Watch [88] report and added as a result of

the data analysis process. Each concept is annotated with the labels of secondary studies in which it was

surveyed. Original domain labels are reported in bold inside sub-domains boxes.

Secondary studies analyzing the use of Planning and Scheduling/Searching/Optimization cover a
period spanning from 2009 to 2020, showing a consolidated and still of interest research topic.

5.2.2 RS-RQ2. What domains of ST have been supported by AI? Similar to what we did to answer
RS-RQ1, we analyzed the sentences collected from each secondary study during the data extraction
process and annotated each study with the ST domain concepts involved in them, according to the
taxonomy introduced in Section 2.2. The result of this analysis is shown by Figure 7, where, for
each ST domain, we report the list of secondary studies in which we found pieces of evidence of
the application of an AI solution to the specific ST domain. From Figure 7, we can observe the
following: (1) Almost all selected secondary studies (19 of 20) have surveyed studies about the
application of AI to the Testing activity ST domain. In particular, the most recurrent ST concepts
of this domain are: Test Case Optimization/Prioritization/Selection (11 of 20), Test Data Definition
(10 of 20), and Test case generation (8 of 20); (2) 12 secondary studies surveyed the use of AI in
the Testing Technique domain. In this ST domain, Mutation Testing and Requirement-based Testing
are the testing techniques for which more secondary studies found evidence of AI applications
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Fig. 7. The resulting excerpt AI supported ST taxonomy, built starting from the SWEBOK [18]. Gray boxes

represent key concepts not explicitly included in the SWEBOK and added as a result of the data analysis

process. Each concept is annotated with the labels of secondary studies in which it was surveyed.

(6 and 4 studies, respectively); (3) 11 secondary studies showed evidences of AI applied in the
Testing Objective ST domain. In particular, 5 studies showed the use of AI to support Functional
Testing, 5 studies analyzed primary sources where AI was applied to Non-functional Testing, 5
studies showed evidence on the application of AI to GUI Testing, and 4 surveyed the use of AI for
Regression Testing; (4) few secondary studies (3 of 20), reported evidence on the use of AI in the
Test Target ST domain. Among these 3 secondary studies, 1 covered the use of AI in Unit Testing,
1 the application of AI in Integration Testing, and 2 the AI support in System Testing; (5) Software
Testing Fundamentals ST domain has been covered by 3 secondary studies. All these works reported
evidence on the use of AI to support the introduction and standardization of terms and definitions
in the field of the Testing Related Terminology.
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Fig. 8. AI and ST domain pairs covered by the selected secondary studies. For each pair of domains, we report

the count of distinct secondary studies surveying the corresponding applications of AI to ST.

Overall, the most important finding we can derive from Figure 7 is the evidence of an intense
application of AI to: (1) the development of test cases, including their generation and the definition
of test cases’ input and expected output, i.e., test oracles. To aid the test oracle definition, AI has
been applied to metamorphic-based testing and to GUI testing; (2) the management of the test cases,
particularly, their prioritization and selection, which is confirmed by the use of AI for regression
testing; (3) the generation of test cases from requirements using natural language processing and
knowledge representation techniques; (4) the detection of equivalent mutants and the generation
of new mutants in mutation testing techniques; and (5) the testing of both functional and non-
functional requirements.

5.2.3 RS-RQ3. Which ST domains have been supported by which AI domains and how? To answer
RS-RQ3, we discuss the evidence collected from the selected secondary studies concerning what AI
domains have been applied to support what ST domains. The bubble chart in Figure 8 reports the
number of secondary studies that investigated the application of a given AI domain to a specific
ST domain. From the chart, we can derive the following observations: (1) Testing Activity and
Testing Objective are the only two ST domains for which we found evidence of the application
of solutions from all the AI domains. Also, with the exception of Software Testing Fundamentals,
the AI domains Planning, Communication, Learning, and Knowledge have been applied to all ST
domains; (2) Knowledge is the only AI domain for which we found evidence of applications to
Software Testing Fundamentals, moreover, it is the only AI domain involved in all the ST areas;
(3) the majority of selected secondary studies (10 of 20) analyzed the application of AI techniques
belonging to the Planning domain for supporting the Testing Activity, thus being the most surveyed
interplay of AI and ST; (4) the second most surveyed interplay of AI and ST is Learning applied to
Testing Activity. Moreover, we evidenced that machine learning is the only key concept belonging
to the Learning AI domain that has been exploited in this ST domain; (5) very few secondary studies
surveyed the application of the Integration & Interaction and the Perception AI domains to ST. More
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Table 6. (a) First Part of the Resulting Mapping
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Test

Target

Unit Testing F11 F11 F11
Integration Testing F1 F1 F1 F1
System Testing F11 F11 F11 F15 F15 F15

Testing

Objective

Functional Testing F9 F9 F9, F13
F9, F11,

F13
Features Testing F1 F1 F1
Conformance Testing

Non-functional Testing F11
Usability Testing F7 F7 F7
Security Testing F7 F7 F7
Safety Testing F7 F7
QoS Testing F7
Compatibility Testing

Reliability Testing
Regression Testing F1 F1, F9 F1, F9
Stress Testing F9, F11 F9
Structural Testing F9 F9, F13 F9
GUI Testing F5 F4 F9, F13 F9
Acceptance Testing F15 F15 F15

Testing

Technique

Combinatorial Testing F1 F1 F1
Requirement-based
Testing

F4 F1 F1 F1 F15 F2 F15 F2,F15

Mutation Testing
F1, F8,

F10, F16
F1, F8,

F10, F13
F16

F1, F8,
F10

Random Testing F1 F1 F1
Concolic Testing F1, F8 F1, F8 F1, F8
Model-based Testing F9 F2
Metamorphic-based
Testing
Equivalence Partitioning
Concurrency Testing F15
Statistical Testing

Testing

Activity

Test Case Generation F4 F2, F4 F4 F9, F11
F5, F8,
F9, F11

F5, F8,
F11

F15 F15
F2,F5,
F15

Test Planning F4 F4 F4 F11
Test Oracle Definition F4 F4 F4 F8 F5 F2
Test Case Design
and Specification

F4 F4 F2

Test Logs Reporting F4 F4
Defect Tracking F4 F4 F1 F1, F8 F1
Test Case Optimization
/Prioritization/Selection

F4 F3, F4 F3, F4 F6 F6, F7
F4, F5,
F6, F7

F2, F19 F19

Test Results Evaluation F4 F4 F8

Test Data Definition F4 F4 F9 F8
F5, F8,

F10, F11
F8, F11,

F13
F2 F15

Test Execution F5
Test Repair
Flaky Test Prediction
Test Environment
Development
Test Costs Estimation F16

Software

Testing

Fundamentals

Testing
Related
Terminology

F4
F3, F4,

F14
F3, F4

Rows and columns represent ST and AI concepts, respectively. Cells include the selected secondary studies from which
we extracted the evidence of applications.

precisely, Multi-agent systems and Computer vision are the only AI key concepts belonging to these
domains for which we had evidence of application in ST; (6) the Software Testing Fundamentals
domain characterizes the Software Testing Fundamental terms and definitions. This justifies why
Knowledge is the only one AI domain for which we found evidence of application to this ST domain.

Additionally, to deepen our discussion, we analyzed the pieces of evidence extracted from the
selected secondary studies, to identify more in detail which AI methodology has been applied
to specific ST fields. The results of this analysis are reported in Tables 6(a) and 6(b). Each table
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Table 6. (b) Second Part of the Resulting Mapping
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Test

Target

Unit Testing
Integration Testing F1
System Testing

Testing

Objective

Functional Testing F12 F12
Features Testing
Conformance Testing F12

Non-functional Testing
Usability Testing
Security Testing F7
Safety Testing F20
QoS Testing
Compatibility Testing F12
Reliability Testing F20

Regression Testing F17 F17 F20 F17 F17
Stress Testing
Structural Testing

GUI Testing F12
F5,
F12

F12 F5 F5

Acceptance Testing

Testing

Technique

Combinatorial Testing
Requirement-based
Testing

F2

Mutation Testing
F10,
F12

F10,
F12

F12
F10,
F12

Random Testing F1 F20
Concolic Testing
Model-based Testing
Metamorphic-based
Testing

F18 F18 F18 F18
F12,
F18

Equivalence Partitioning F12
Concurrency Testing
Statistical Testing F20

Testing

Activity

Test Case Generation F5
F5,
F12

F5 F5 F4 F5

Test Planning F2 F12

Test Oracle Definition

F5,
F12,
F18

F18 F12 F5 F12 F5 F12 F18
F12,
F18

F5 F5

Test Case Design
and Specification

F12 F12 F12 F12

Test Logs Reporting F5
Defect Tracking

Test Case Optimization
/Prioritization/Selection

F19 F19
F12,
F17,
F19

F12,
F17,
F19

F12,
F19

F5,
F20

F19
F12,
F17,
F19

F17,
F19

F12,
F19

F19
F12,
F19

Test Results Evaluation F12 F12 F12 F12 F12 F12
Test Data Definition F18 F5 F5 F5 F18 F18 F18 F4
Test Execution F5 F5 F5
Test Repair F5
Flaky Test Prediction F5
Test Environment
Development

F12

Test Costs Estimation F12 F12

Software

Testing

Fundamentals

Testing
Related
Terminology

Rows and columns represent ST and AI concepts, respectively. Cells include the selected secondary studies from which
we extracted the evidence of applications.

cell lists the secondary studies in which we found evidence of the application of a specific AI do-
main/subdomain (column) to support a specific ST domain/field (row). Looking at the mapping at
a bird’s-eye view, we can observe that: (1) evolutionary algorithms, genetic algorithms, and meta-
heuristic optimisation have been applied to almost all the ST domains and fields, and (2) test case
generation, test oracle definition, test case optimization/prioritization/selection, test data definition,
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Requirement-based Testing, and Mutation Testing are the ST fields that have seen support from
most of the AI domains.

Furthermore, to deepen the understanding of RS-RQ3, we drilled down into the cells with several
sources assigned to them (i.e., 3 and 4). Such cells indicate that the associated AI concepts have
been extensively applied to support the related ST fields. For such cells, in the following bullet
list, we summarize (1) the commonalities and differences in the application of the AI techniques
identified by the analyzed works, and (2) the difficulties and limitations of the application of the
AI techniques to ST objective, and (3) practical insights.

(1) Evolutionary algorithms and genetic algorithms were found to be the most used AI techniques
to support Mutation testing, with a prevalence of genetic algorithms w.r.t. evolutionary al-
gorithms. As an example, F10 [94] reports that an “...evolutionary strategy with Gaussian
Distribution to identify subdomains from which test cases can be selected with higher muta-
tion score”. While F8 [43] states: “Genetic Algorithms was also used to address the problem of
equivalent mutants in mutation testing.” These two search-based techniques have been ap-
plied to Mutation testing primarily for two purposes, either for mutant optimization or for
Test case optimization. However, most of the proposed techniques are either presented in
a general manner or are not sufficiently empirically evaluated and can not serve as a base
for enabling practitioners to choose a specific technique for a given software. The major
challenges include the effort and cost entailed in mutation testing and thus limiting its ap-
plication to testing real-world programs. As stated by F1 [11] and F16 [57], very few works
explored the application of hyper-heuristics to Mutation Testing, while this technique could
bring the advantages of generating stronger mutants and reducing the number of mutants
used. As highlighted by F10 [94], meta-heuristic search techniques, and genetic algorithms
in particular, have been also effectively applied for the selection of mutant operators and
the generation of mutants and generation of test data. From a more practical point of view
Genetic Algorithm, Ant Colony, Bacteriological Algorithm, Hill Climbing, and Simulating An-
nealing have been extensively used in search-based mutation testing.

(2) Genetic algorithm has also been widely used for Test Case Generation and Test Data Defini-
tion as it can be drawn from F9 [89] (“Researchers apply SBTs for automatic test case gener-
ation based on a test objective—adequacy criteria—that is formulated as a fitness function...” )
and F10 [94] (“The data are considered a pattern to be executed in the design. In the crossover
phase, the Genetic Algorithm selects sub-patterns with overlapped inputs to cross and generate
new ones...” ). According to F10 [94], experiments conducted in this field showed unsatisfac-
tory results, with the most important challenge being the time necessary for obtaining a
good solution, in terms of test cases and test data definition, when more than one solution
must be found. However, preliminary results indicate that the use of meta-heuristic search
techniques for reducing both the costs and efforts for test data generation in mutation test-
ing is promising. In the Test Case Generation field, genetic algorithms and evolutionary al-
gorithms have been widely applied for “global” search-based techniques (SBTs), i.e., the ef-
fective search for global optimal solutions to overcome the problem of getting stuck in local
optima. Subsequently, “local” SBTs are used to efficiently obtain the optimal solution starting
from global ones. In particular, hill climbing and simulating annealing are the most common
examples of local SBTs (F9 [89]). From a more practical point of view, genetic algorithms
seem to outperform random search in Test Case Generation for structural coverage (F11 [3]).

(3) Metaheuristic optimisation has been extensively used for Test Case Optimization/
Prioritization/Selection, Functional Testing, Mutation Testing, Test Case Generation, and Test
Data Definition. Examples of these applications are reported in F7 [1] (“Therefore, the initial

ACM Computing Surveys, Vol. 56, No. 3, Article 58. Publication date: October 2023.



58:26 D. Amalfitano et al.

results indicated SA as more effective than other approaches for finding smaller sized test
suites” ), F9 [89] (“...surveyed the past work and the current state-of-the-art of the applications of
SBTs for structural testing, functional testing...” ), F1 [11] (“...how SBST has been explored in the
context of Mutation Testing, how objective functions are defined and the challenges and opportu-
nities of research in the application of meta-heuristics as search techniques” ), and F8 [43] (“Test
case generation using mutation testing with Ant Colony Optimization,” “...a set of test cases are
extracted automatically from the textual requirements” ). Although several secondary studies
showed that metaheuristic-based techniques have been extensively used to provide solutions
for automatizing testing tasks (such as test case selection and test order generation) and for
implementing more cost-effective testing processes, some studies, in particular F5 [98] and
F11 [3], also highlighted the need for additional empirical experimentation to demonstrate
the applicability and the usefulness of metaheuristic in more realistic industrial scenarios.

(4) Text mining is the most widely used NLP technique for Test Case Generation. As an example,
F2 [35] and F5 [98], respectively, report: “...a set of test cases are extracted automatically
from the textual requirements,” “...NLP techniques have been used to generate automated test
cases from initial requirements documents...a tool named SpecNL generates a description of
software test cases in natural language from test case specification....” As pointed out by F2
[35] and F15 [2], the use of NLP-assisted software testing techniques and tools has been
found highly beneficial for researchers and practitioners, as they reduce the cost of test-case
generation and the amount of human resources devoted to test activities. However, for a
wide industrial usage of NLP-based testing approaches, more work is required to increase
their accuracy. Moreover, comparative studies should be performed to highlight strengths
and weaknesses of NLP tools and algorithms.

(5) Ontologies have been mainly adopted to support the introduction and standardization of
terminologies and definitions in ST. Several examples of such application are reported in F3
[96], F4 [25], and F14 [28], respectively: “...a software testing ontology is designed to represent
the necessary software testing knowledge within the software testers’ context...” ; “...the proposed
ontology defines a shared vocabulary for testing domain which can be used in knowledge
management systems to facilitate communication, integration, search, and representation of
test knowledge...” ; “...the authors presented an ontology, called Test Ontology Model (TOM), to
model testing artifacts and relationships between them.” As highlighted by F3 [96], the main
benefit of having a suitable software testing ontology is to minimize the heterogeneity,
ambiguity and incompleteness problems in terms, properties and relationships. Another
potential value of using ontologies and, more in general, semantic web technologies in
software testing highlighted by F4 [25] is that they can provide a more powerful mechanism
for sharing test assets that are less application-dependent and hence more reusable. By
analyzing the terminological coverage of the selected ontologies, in F4 [25] the authors
observed that most ontologies cover terms related to dynamic and functional testing.
Conversely, only a few ontologies consider terms related to static and non-functional
testing. Similarly, the authors of F14 [28] highlighted that most ontologies have limited
coverage and none of them is truly a reference ontology or is grounded in a foundational
ontology. In conclusion, the software testing community should invest more efforts to get
a unique and well-established reference software testing ontology.

(6) Artificial neural networks have been used for several testing activities such as oracle defi-
nition, test-case generation, test-case refinement, and test-case evaluation. The following
evidence of the applications of artificial neural networks for Test Oracle Definition are
reported in F12 [30] and F18 [32], respectively: “...ML algorithms generated test verdict,
metamorphic relation, and—most commonly—expected output oracles. Almost all studies
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employ a supervised or semi-supervised approach, trained on labeled system executions or code
metadata–including neural networks, support vector machines, adaptive boosting, and decision
trees” ; “...a trend we observed is that the oracle problem tends to be tackled by employing either
ANN or decision tree-based approaches....” Regarding the Test Oracle Definition activity, F2
[35] observed that test oracles obtained by using artificial neural networks are more efficient,
effective, and reusable compared to those generated with existing traditional approaches.
Additionally, F12 [30] identified the main advantages of using artificial neural networks and
machine learning in their scalability and in the minimal need of human intervention. As for
the main problem faced by researchers when trying to apply artificial neural networks and
machine learning to solve software testing problems, both F12 [30] and F18 [32] identified
the need for a substantial amount and high-quality training data, which is the key for
machine learning algorithms to function as intended.

(7) Classification, clustering, and reinforcement learning AI methodologies have been widely
adopted for Test Case Optimization/Prioritization/Selection, as highlighted by F19 [74]: “The
main ML techniques used for Test case Selection and Prioritization are: supervised learning
(ranking models), unsupervised learning (clustering), reinforcement learning, ...Supervised
learning includes all ML techniques that rely on classification or ranking models ....” Similarly,
F17 [50] states that: “...the publication trend of ML technique applied to Test Case Priori-
tization...shows that the classification technique category was the most popular followed
by clustering then reinforcement learning come as the last preferred.” F12 [30] also reports
“...approaches that employ reinforcement learning to select and prioritize test cases according
to their duration, previous execution and failure history.” F17 [50] reported that classification
is the most used ML technique as it benefits from the availability of historic data, which
results in a high average percentage of faults detected and code coverage effectiveness. F17
[50] also highlighted that Reinforcement learning requires a more structured process and
improvements before it is mature enough to be included in undergraduate taught programs.
Interestingly, F19 [74] highlights that, although supervised learning, unsupervised learning,
reinforcement learning, and natural learning processing are the four main ML techniques
used for test case selection and prioritization, some combinations of them have also been
reported in the literature. For example, NLP-based techniques, which are often used for
feature preprocessing, were combined with supervised or unsupervised learning to achieve
better performance for test case prioritization. F19 [74] highlighted that the lack of standard
evaluation procedures and appropriate publicly available datasets resulting from the
execution of real world case studies makes it very challenging to draw reliable conclusions
concerning ML-based test case selection and prioritization performance. Thus, getting
the research community to converge toward common evaluation procedures, metrics, and
benchmarks is vital for building a strong body of knowledge we can rely on, without which
advancing the state-of-the-art remains an elusive goal.

As a final consideration, we can highlight that the application of word embedding to Test Case
Optimization/Prioritization/Selection has been observed only recently, in 2021 by F19 [74], which re-
ports that “NLP-based techniques are used for processing textual data, such as topic modeling, Doc2Vec,
and LSTM. NLP-based techniques can also be mixed with other ML or non-ML techniques.” More-
over, word embedding and neural NLP models are becoming more and more pervasive in trans-
disciplinary studies and applications, and since foundation models16 are receiving much attention

16Rishi Bommasani and Percy Liang (Oct. 2021), Reflections on foundation models: https://thegradient.pub/reflections-on-
foundation-models/
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Table 7. Future Research Directions Indicated by the Selected Secondary Studies

Future Research Direction Sources

More rigorous experimental research F4, F7, F10, F11, F12, F15, F16, F17
Develop evidence with real systems F12, F16, F18
New data type representation for test data generation F13
Apply ML to support Automation F12
Develop an ontology for ST F14
None F1, F2, F3, F5, F6, F8, F9, F19, F20

from both academic and industrial researchers, we expect that in the near future NLP will be more
extensively applied also to support ST.

5.2.4 RS-RQ4. What are the future research directions of AI in ST? Table 7 summarizes the most
recurrent future research directions in AI applied to ST emerging from the analysis of the selected
secondary studies, and the list of studies mentioning them. The table was built by analyzing the
sentences, extracted from each study, discussing future research directions and grouping sentences
indicating similar research directions. Finally, for each group, we defined a category by means of
a short summary of the research direction. The need for more rigorous experimental research is the
most recurrent future research direction (8 of 20 studies). For instance, the authors in F12 [30] state
that “most research efforts are not methodologically sound, and some issues remain unexplored.”
While in F11 [3], the authors report that empirical evidence is needed to assess how “AI-supported
techniques (can outperform) current software testing techniques.” Three studies identified the need
to develop evidence with real systems, i.e., to fill the lack of studies investigating the application of
AI to ST of larger and more complex software systems. As an example, the authors of F16 [57]
observed that “the great majority of the conducted evaluations do not use real and large systems.”
Similarly, in F12 [30], the authors identified the lack of AI applications to “a wider range of soft-
ware testing problems.” We believe that this future research direction might mitigate the current
challenges in the applicability and transferability of AI applications to ST in industrial settings.
The authors of F13 [81] identify the need of introducing new data type representation for test data
generation to apply genetic algorithms for automated definition of input/output test values. An-
other research direction emerging from the analysis is meant to apply ML to support automation.
The authors from F12 [30] suggest more research be conducted to evaluate how machine learning
approaches can be used to support ST automation by claiming: “We believe that the overarching
motivation for research in this area should be automating most software-testing activities.” More-
over, the authors of F14 [28] discuss the necessity to develop an ontology for ST as they concluded
that “operational versions” of ST taxonomies must be “designed and implemented.” Finally, 9 of 20
studies do not propose any future research direction.

6 FURTHER DISCUSSION

In this section, we first provide additional general considerations on the results of our study
(Section 6.1). Then, we focus on Testing Activities whose automation has been supported by
different AI techniques and, for each AI technique, synthesize the main purpose has been used
for (Section 6.2).

6.1 Overall Considerations

Replicability of primary studies: As mentioned in Section 5.2.4, we found that 8 of 20 secondary
studies have highlighted the need for rigorous empirical researches to evaluate the outcomes pre-
sented by the primary studies. Drawing from this need, we believe that future secondary studies
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should devote more attention to this aspect by including specific research questions or quality
assessment criteria aimed to evaluate the replicability of the surveyed studies.

Lack of benchmarks about the interplay between AI and ST: We observed the lack of benchmarks
that practitioners and researcherscan use to assess the outcomes of applying a specific AI technique
to support ST. We feel that this could be an important line of research that can be underpinned
by the mapping developed in this study. In particular, benchmarks could include datasets and case
studies for which results are already known, and performance metrics the proposed AI-supported
ST approaches could be compared against. We also feel that the availability of these benchmarks
could facilitate future research advancements by providing a common set of outcomes to outline
new research questions and performance metrics.

Use of the mapping from the point of view of ST engineers: ST engineers can use Tables 6(a) and
6(b) to find secondary studies about the AI methodologies that have been already applied to sup-
port specific ST domains and concepts. Each non-empty cell indicates that a specific AI concept
has been already applied to support a given ST activity or field. For instance, let us suppose we
have a practitioner interested in “Test Data Definition.” The practitioner can look at Tables 6(a) and
6(b) and find out which AI methodologies have been leveraged to support this activity. Moreover,
each of the secondary studies reported in non-empty cells supplies pointers to primary studies
providing additional details on the specific application of AI in ST. In this specific example, the
practitioner interested in the application of “genetic algorithms” can deepen this topic by retriev-
ing the primary studies surveyed by the four secondary studies listed in the corresponding cell,
i.e., F5, F8, F10, and F11.

Empty cells as food for thought for researchers: Researchers can use the mapping (Tables 6(a) and
6(b)) to identify new research opportunities by inspecting empty cells. An empty cell in these tables
means that we did not find evidence of the application of a specific AI concept to a given ST one.
Possible explanations for empty cells that should be properly taken into account by researchers are:

Explanation 1: There are not enough primary studies on the application of the specific AI con-
cept to a given ST field of interest. As a result, such application has not permeated
through the secondary sources and into the resulting mapping of this tertiary
study.

Explanation 2: It represents a greenfield opportunity for research, which can be in the form of
novel primary studies, or secondary studies that address the mapping associated
to the specific empty cell; we note that, similar to this explanation for empty cells,
an opportunity to conduct a secondary study is associated to cells of Table 7 in-
cluding only one study published not recently. As an example, the only secondary
study that surveyed the application of AI to support Non-functional Testing is F7,
that has been published in 2009. As a result, an update of the F7 study could be
of interest for the research community.

Explanation 3: It is a false negative for our study. While we have taken great care with the anal-
ysis of our secondary sources, there is still the chance that we have missed a
reported application.

Explanation 4: It is not possible to apply the specific AI solution to the specific ST problem.
The cell might be empty, because the application of AI to software testing might
not be feasible. Either temporarily due to limitations in computing power, or by
construct, where the application of a specific mapping would not make sense. Re-
searchers must be aware of this possibility when using the mapping as inspiration
for research directions.
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To exemplify how researchers can use empty cells, let us suppose we are interested to explore
the “New Data type representation for test data generation” future research direction reported in
Table 7. This future research direction is in relationship with the application of the knowledge repre-
sentation reasoning AI concept to the Test Data Generation field; such application corresponds to an
empty cell in Table 6 (a). At this point, we can use the rows and columns labels as relevant keywords
to perform an initial search in Scopus. To follow this example, we executed this search string ‘‘(
TITLE-ABS-KEY ( knowledge AND representation AND reasoning ) AND TITLE-ABS-KEY
( test AND data AND generation ) )’’ in Scopus and it returned 17 studies.17 We analyzed
these papers and derived that just one of them could be potentially related to the empty cell or con-
sidered useful for the future research direction we are interested in. As a result, we can argue that
this empty cell is consistent to support Explanation 1, Explanation 2, and Explanation 3, and clearly
not supportive of Explanation 4. If several primary studies related to the empty cell would have
been returned from Scopus, then only Explanation 2 and Explanation 3 would have been applied.

Use of standard or well-recognized terminologies and taxonomies: We value the use of standard
or well-recognized taxonomies (i.e., AI Watch [88] and SWEBOK [18]) as sources of a common
language for our domain area. As such, they have been adopted to guide the analysis process.
However, our analysis process shows how this outlook is not shared by the community. This puts
a toll on the analysis process (in terms of construct validity threats, which we discuss in Section 7)
to push the analysis forwards, as an agreement has to be reached upon the term used to describe a
phenomenon. Needless to say, we do not view that standards or well-recognized taxonomies need
to be static. Not only that these evolve, but novel research proposals might need novel terminology.
Yet in general, we observed a lot of variations for concepts that are (or are supposed to be) well
understood. We are far from the first to highlight this issue (for instance, see [36, 84]), and in partic-
ular at the interplay of AI and software testing, Jöckel et al. [44] highlight how this issue becomes
problematic for data analysis in our field and for extending and comparing research results.

6.2 AI Techniques Used to Support the Automation of Testing Activities

As it results from Table 6, several AI techniques have been applied to support ST. In this section,
we focus on Testing Activities whose automation has been supported by different AI techniques
and synthesize the main purpose for which each AI technique has been used for.18

AI for Test Case Generation: Secondary studies shared similar conclusions about how AI tech-
niques have been applied to support the test case generation activity. Search-based AI techniques
have been used to generate optimal test suites according to a given adequacy criterion, such as
code coverage or fault detection. NLP-based techniques have mainly been used to reduce the man-
ual effort of extracting test cases from requirements, specifications and UML models [2, 35, 98]. ML
is considered an emerging AI topic for the automation of test case generation. To be applied, these
techniques have to learn a behavioral model of the application under test. Such a model is usually
built starting from a dataset of inputs and outputs, or on the fly during the exploratory testing
of the application under test. The latter approach is mostly used in GUI-based testing, where the
user interface is explored and tested at the same time by triggering user events [30]. Ontologies
have been used to build a vocabulary of terms that is specific for characterizing the application
context of the software under test. The vocabulary can be used to build (1) abstract test cases, i.e.,

17June 16, 2022.
18Due to space constraints, we limit the discussion to Testing Activities that have been supported by more than three AI
techniques.
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test cases that are not specific to a programming language or (2) platform specific executable test
cases, i.e., test cases implemented in a specific programming language. Ontologies have also been
used within NLP-assisted test case generation processes to impose restrictions on the context at
hand and convert textual documents into an explicit system model for scenario-based test-case
generation [25, 35].

AI for Test Case Optimization/Prioritization/Selection: The analyzed studies also pointed out a
joint observation that considers the ML-based techniques as the most exploited and promising
ones to select or to prioritize the test cases from a test suite for reducing the testing resources such
as the testing time and the use of expensive devices [12, 30, 50]. Possible interesting applications
of ML show that specific models can be trained, from a dataset of test suites, to select test cases
that minimize the testing time or to predict defects in the system under test. The reduction of
the testing time allows also the introduction of test case optimization processes based on ML in
modern continuous integration development processes. ML leaning-based techniques may also be
combined with NLP-based ones. The use of NLP is needed to process textual data for building the
dataset used to train the models [74]. Another common conclusion regards the use of ontologies.
Semantic web-based techniques are the most used ontologies to define traceability links between
test cases, test results and requirements. Such links are exploited to profile the test cases and to
select or prioritize the ones that guarantee specific testing adequacy criteria, such as coverage of
requirements or failure discovery [25, 96].

AI for Test Data Definition: Most of the secondary studies reached a common consensus that
considers the ant colony optimization techniques and genetic algorithms (GAs) as the most cost-
effective for the automatic test data definition in the context of mutation testing [3, 43, 81, 89]. GAs
have been considered as the most effective solution for the automatic generating of test data for
structural, functional, and mutation testing, and it has also been successfully exploited to generate
data for testing floating point computations and expert systems. NLP and ML approaches have been
mainly used to generate test data for GUI testing and, in particular, for mobile GUI testing. NLP
have also been exploited to generate input values expressed in natural language [2, 35], whereas
ML techniques (such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN),
Unsupervised and Reinforcement Learning) are used in automated exploratory testing to generate
inputs (i.e., user events on the application GUI) allowing the exploration of application states that
were not previously visited [32, 98].

AI for Test Oracle Definition: The studies concluded that ML has the potential to solve the “test
oracle problem,” i.e., the challenge of automatically generating oracles. ML algorithms have been
used to generate test verdicts, metamorphic relations, and most commonly expected output oracles
[30, 98]. In particular, ML-based predictive models are trained to serve either as a stand-in for an
existing test oracle (used to predict a test verdict) or as a way to learn a function that defines
expected outputs or metamorphic relationships and that can be used to issue a verdict. Supervised
and semi-supervised ML approaches seem to be the most promising; the associated ML models
are trained on labeled system executions or on source code metadata. Of these approaches, many
use some type of neural networks, such as Backpropagation NNs, Multilayer Perceptrons, RBF
NNs, probabilistic NNs, and Deep NNs. Others apply support vector machines, decision trees, and
adaptive boosting [32]. The studies showed great promise, but significant open challenges. The
performances of the trained ML models are influenced by the quantity, quality, and content of the
available training data [32]. Models should be retrained over time. The applied techniques may
be insufficient for modeling complex functions with many possible outputs. Research is limited
by the overuse of simplistic examples, lack of common benchmarks, and unavailability of code
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and data. A robust open benchmark should be created, and researchers should provide replication
packages. Computer vision approaches are mainly used to support the oracle definitions in the
context of GUI-based testing [98], where the verdicts need that specific regions or images of the
graphical user interface are recognized to check their correctness, such as the color, the position
on the screen, or the quality of the image.

7 THREATS TO VALIDITY

This section discusses the main possible threats to the validity of our tertiary study, classifying
them according to Petersen et al. [77] and drawing suggestions from Zhou et al. [107]. Thus, we
classified the Threats to validity into (i) threats to Construct Validity, (ii) threats to internal validity,
and (iii) threats to external validity.

Threats to Construct Validity. The use of different terminologies for AI and ST concepts in the
selected secondary studies can lead to misclassification. As a strategy to mitigate this possible
threat, we started from well-known taxonomies for both the AI [88] and ST [18] domains. In addi-
tion, the process of classifying the extracted data was performed iteratively and peer-reviewed by
the authors. Furthermore, relevant concepts emerging from secondary studies were added to the
adopted reference taxonomies, when missing.

Threats to Internal Validity. One of the major issues with systematic mappings is the risk of miss-
ing relevant studies. To mitigate this risk, we adopted a structured process to define and validate
our search string, as suggested by Petersen et al. [77], and selected four major digital libraries to ex-
ecute appropriate queries derived from it. In particular, our search string was designed to retrieve
the largest number of published secondary studies by searching for the terms survey, mapping,
review, secondary study, or literature analysis in the title or abstract of the papers. Furthermore,
a snowball search process was performed to possibly find additional studies of interest. Another
possible threat regards our decision to exclude gray literature papers, such as technical reports and
graduate theses, that could lead to miss relevant secondary studies. However, since we reviewed
secondary and not primary studies, the risk of excluding relevant but not peer-reviewed material
is low. Biases or errors in the application of IC and EC as well as in the quality assessment of pa-
pers is another threat to the validity of our study. We mitigated this threat by having each selected
paper examined by two groups of co-authors, including an AI expert and an ST specialist each,
and having eventual disagreements resolved by face-to-face discussions between the members of
the two groups.

Threats to External Validity. Publication bias is another common threat to the validity of sec-
ondary and tertiary studies [97]. In particular, the result of our study might have been biased from
inaccurate results reported in the selected secondary studies. A common reason for this is that
primary studies with negative results are less probable to get accepted for publication and, as a
consequence, to be taken into account by secondary studies, and therefore not permeating through
to a tertiary study. Another external validity threat for our study relates to the risk of not extract-
ing all the relevant information available in the selected studies or incorrect interpretation of the
extracted data. Both these risks may have caused an inaccurate mapping of some analyzed studies.
We tried to mitigate this threat by having an AI expert and an ST specialist involved in the data
extraction and mapping of each study and resolving eventual disagreements in a face-to-face dis-
cussion. Our data extraction could have missed emerging trends provided by recently published
primary studies that were not surveyed yet by any secondary studies. Also, since a tertiary study
is based on data aggregated in secondary studies, it is possible that relevant information that was
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present in primary studies was omitted in the secondary studies and thus missed by our study.
This threat is inherent to any tertiary study.

8 CONCLUSIONS

The goal of our tertiary study was to systematically understand how AI has been applied to support
ST. As a result, we were able to uncover the interplay between the two domains and to reveal trends
and possible future research directions. To achieve this goal, we defined nine RQs (five publication
space RQs and four research space RQs) and conducted a systematic mapping study. We designed
a strict research protocol and followed a systematic and peer-reviewed process to: (1) select our
sources of information, (2) extract evidence from them, and (3) analyze the extracted data to answer
our RQs. Starting from an initial set of 877 secondary studies retrieved from four major computer
science digital libraries and an additional set of 296 studies retrieved by applying snowballing,
the selection process led us to 20 relevant high-quality secondary studies. The analysis of the
data extracted from the selected studies let us answer our RQs and derive the following main
conclusions.

As for the publication space RQs: (1) the distribution of the selected secondary studies over the
publication years (75% of them were published in the past six years), the large amount of unique
primary studies they surveyed (710), and the distribution of these primary studies over time (the
first dating 1995 and almost two-thirds of them appearing in the past ten years) show a growing
interest from the research community in a well-consolidated research topic; (2) most of the selected
studies were published in journal venues and a large part of them appeared in top-ranked journals,
indicating the high importance of the topic; and (3) most of the authors’ affiliations are located in
South America (Brazil, Argentina, and Uruguay), while affiliation countries that typically dominate
in computer science or computer engineering publications (e.g., USA and China) do not occur in
our observations.

Regarding the research space RQs: (1) several AI domains have been applied to support ST with
the Planning being the most popular one, and machine learning and natural language processing
the most trendy; (2) several ST domains have been supported by AI. Almost all selected secondary
studies surveyed the application of AI to the Testing Activity ST domain, and a majority of them
surveyed the application of AI to the Testing Technique domain. Overall, it results that, in recent
years, AI has been pervasively introduced in ST; (3) the majority of selected secondary studies
investigated the application of Planning to support the Testing Activity, thus resulting the most
surveyed pair of domains; (4) except for Software Testing Fundamentals, all ST domains have re-
ceived support by more than one AI domain; in particular, Testing Activity and Testing Objective
have seen applications from all AI domains. Similarly, by analyzing our mapping at a finer grain
level, it results that most ST fields have received support from more than one AI concept, with
some concepts having been applied only recently (e.g., word embedding); and (5) most frequent
future research directions emerging from the selected secondary studies are: (i) the need for more
rigorous research, (ii) the evaluation of the proposals in larger or real-world software systems,
(iii) more research to evaluate how machine learning approaches can be applied to support soft-
ware testing automation, and (iv) the need for the development of new types of representations to
apply genetic algorithms for test data generation.

To the best of our knowledge, this research is the first tertiary study investigating how AI is
used to support ST. As a result of this research, we obtained a fine-grained mapping that describes
the current interplay between AI and ST. Researchers can leverage this mapping to identify op-
portunities for future research on new secondary studies to be conducted or new applications of
AI to ST to be developed. Practitioners can also use the mapping to take an informed decision on
which AI technology to possibly adopt in support of their testing processes.
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