331 research outputs found

    Ab initio calculation of the Hoyle state

    Get PDF
    The Hoyle state plays a crucial role in the hydrogen burning of stars heavier than our sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle [1] as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago [2,3], nuclear theorists have not yet uncovered the nature of this state from first principles. In this letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy. These lattice simulations provide insight into the structure of this unique state and new clues as to the amount of fine-tuning needed in nature for the production of carbon in stars.Comment: 4 pp, 3 eps figs, version accepted for publication in Physical Review Letter

    Dynamical symmetry of isobaric analog 0+ states in medium mass nuclei

    Get PDF
    An algebraic sp(4) shell model is introduced to achieve a deeper understanding and interpretation of the properties of pairing-governed 0+ states in medium mass atomic nuclei. The theory, which embodies the simplicity of a dynamical symmetry approach to nuclear structure, is shown to reproduce the excitation spectra and fine structure effects driven by proton-neutron interactions and isovector pairing correlations across a broad range of nuclei.Comment: 7 pages, 5 figure

    Examples of the Zeroth Theorem of the History of Physics

    Get PDF
    The zeroth theorem of the history of science (enunciated by E. P. Fischer) and widely known in the mathematics community as Arnol'd's Principle (decreed by M. V. Berry), states that a discovery (rule, regularity, insight) named after someone (often) did not originate with that person. I present five examples from physics: the Lorentz condition defining the Lorentz gauge of the electromagnetic potentials; the Dirac delta function (x); the Schumann resonances of the earth-ionosphere cavity; the Weizsacker-Williams method of virtual quanta; the BMT equation of spin dynamics. I give illustrated thumbnail sketches of both the true and reputed discoverers and quote from their "discovery" publications.Comment: 36 pages, 8 figures. Small revisions, added material and references - Arnol'd's law, Emil Wiechert. Submitted to Am. J. Phy

    Particle Aggregation in a turbulent Keplerian flow

    Get PDF
    In the problem of planetary formation one seeks a mechanism to gather small solid particles together into larger accumulations of solid matter. Here we describe a scenario in which turbulence mediates this process by aggregating particles into anticyclonic regions. If, as our simulations suggest, anticyclonic vortices form as long-lived coherent structures, the process becomes more powerful because such vortices trap particles effectively. Even if the turbulence is decaying, following the upheaval that formed the disk, there is enough time to make the dust distribution quite lumpy.Comment: 16 pages, 9 figure

    Nuclear masses set bounds on quantum chaos

    Full text link
    It has been suggested that chaotic motion inside the nucleus may significantly limit the accuracy with which nuclear masses can be calculated. Using a power spectrum analysis we show that the inclusion of additional physical contributions in mass calculations, through many-body interactions or local information, removes the chaotic signal in the discrepancies between calculated and measured masses. Furthermore, a systematic application of global mass formulas and of a set of relationships among neighboring nuclei to more than 2000 nuclear masses allows to set an unambiguous upper bound for the average errors in calculated masses which turn out to be almost an order of magnitude smaller than estimated chaotic components.Comment: 4 pages, Accepted for publication in Physical Review Letter

    Finite size corrections to scaling in high Reynolds number turbulence

    Get PDF
    We study analytically and numerically the corrections to scaling in turbulence which arise due to the finite ratio of the outer scale LL of turbulence to the viscous scale η\eta, i.e., they are due to finite size effects as anisotropic forcing or boundary conditions at large scales. We find that the deviations \dzm from the classical Kolmogorov scaling ζm=m/3\zeta_m = m/3 of the velocity moments \langle |\u(\k)|^m\rangle \propto k^{-\zeta_m} decrease like δζm(Re)=cmRe3/10\delta\zeta_m (Re) =c_m Re^{-3/10}. Our numerics employ a reduced wave vector set approximation for which the small scale structures are not fully resolved. Within this approximation we do not find ReRe independent anomalous scaling within the inertial subrange. If anomalous scaling in the inertial subrange can be verified in the large ReRe limit, this supports the suggestion that small scale structures should be responsible, originating from viscosity either in the bulk (vortex tubes or sheets) or from the boundary layers (plumes or swirls)

    Mean-Field vs Monte-Carlo equation of state for the expansion of a Fermi superfluid in the BCS-BEC crossover

    Full text link
    The equation of state (EOS) of a Fermi superfluid is investigated in the BCS-BEC crossover at zero temperature. We discuss the EOS based on Monte-Carlo (MC) data and asymptotic expansions and the EOS derived from the extended BCS (EBCS) mean-field theory. Then we introduce a time-dependent density functional, based on the bulk EOS and Landau's superfluid hydrodynamics with a von Weizs\"acker-type correction, to study the free expansion of the Fermi superfluid. We calculate the aspect ratio and the released energy of the expanding Fermi cloud showing that MC EOS and EBCS EOS are both compatible with the available experimental data of 6^6Li atoms. We find that the released energy satisfies an approximate analytical formula that is quite accurate in the BEC regime. For an anisotropic droplet, our numerical simulations show an initially faster reversal of anisotropy in the BCS regime, later suppressed by the BEC fluid.Comment: 13 pages, 3 figures, presented to the 15th International Laser Physics Workshop (Lausanne, July 24-28, 2006); to be published in Laser Physic

    Variational bound on energy dissipation in plane Couette flow

    Full text link
    We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in turbulent plane Couette flow. Using the compound matrix technique in order to reformulate this principle's spectral constraint, we derive a system of equations that is amenable to numerical treatment in the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits a minimum at intermediate Reynolds numbers, and reproduces the Busse bound in the asymptotic regime. As a consequence of a bifurcation of the minimizing wavenumbers, there exist two length scales that determine the optimal upper bound: the effective width of the variational profile's boundary segments, and the extension of their flat interior part.Comment: 22 pages, RevTeX, 11 postscript figures are available as one uuencoded .tar.gz file from [email protected]

    DC and AC Josephson effects with superfluid Fermi atoms across a Feshbach resonance

    Full text link
    We show that both DC and AC Josephson effects with superfluid Fermi atoms in the BCS-BEC crossover can be described at zero temperature by a nonlinear Schrodinger equation (NLSE). By comparing our NLSE with mean-field extended BCS calculations, we find that the NLSE is reliable in the BEC side of the crossover up to the unitarity limit. The NLSE can be used for weakly-linked atomic superfluids also in the BCS side of the crossover by taking the tunneling energy as a phenomenological parameter.Comment: 8 pages, 4 figures, presented at the Scientific Seminar on Physics of Cold Trapped Atoms, 17th International Laser Physics Workshop (Trondheim, June 30 - July 4, 2008

    The pion structure function and jet production in γpnX\gamma p \to n X

    Full text link
    Despite its theoretical and practical importance, the pion structure is still badly constrained, particularly at low xπx_{\pi} and in the sea-quark and gluon sectors. Recently ZEUS have presented data on dijet photoproduction with a leading neutron, which is dominated by slightly off-shell pion exchange and can be used to constrain the pion densities down to xπ0.01x_{\pi}\simeq 0.01. We compare a recent NLO calculation to the ZEUS data and find that the lower gluon densities of SMRS seem to be preferred by the data. Theoretical uncertainties, in particular from the pion flux, are discussed in some detail.Comment: Talk presented at the Ringberg Workshop on ``New Trends in HERA Physics 2001''. 12 pages, 10 postscript figure
    corecore