28,150 research outputs found

    11B^{11}B NMR and Relaxation in MgB2MgB_2 Superconductor

    Full text link
    11B^{11}B NMR and nuclear spin-lattice relaxation rate (NSLR) are reported at 7.2 Tesla and 1.4 Tesla in powder samples of the intermetallic compound MgB2MgB_2 with superconducting transition temperature in zero field TcT_c = 39.2 K. From the first order quadrupole perturbed NMR specrum a quadrupole coupling frequency of 835 ±\pm 5 kHz is obtained. The Knight shift is very small and it decreases to zero in the superconducting phase. The NSLR follows a linear law with T1TT_1T = 165 ±\pm 10 (sec K) . The results in the normal phase indicate a negligible ss-character of the wave function of the conduction electrons at the Fermi level. Below TcT_c the NSLR is strongly field dependent indicating the presence of an important contribution related to the density and the thermal motion of flux lines. No coherence peak is observed at the lower field investigated (1.4 T)

    The equation of state in lattice QCD: with physical quark masses towards the continuum limit

    Get PDF
    The equation of state of QCD at vanishing chemical potential as a function of temperature is determined for two sets of lattice spacings. Coarser lattices with temporal extension of N_t=4 and finer lattices of N_t=6 are used. Symanzik improved gauge and stout-link improved staggered fermionic actions are applied. The results are given for physical quark masses both for the light quarks and for the strange quark. Pressure, energy density, entropy density, quark number susceptibilities and the speed of sound are presented.Comment: 14 pages, 9 figures. Version published in JHEP: discussions added in Sects. 1, 2. Fig. 1 changed and a new figure for the interaction measure added. Information on statistics added in Table 1. Raw values of the pressure added in Table 3. A few references adde

    Magnetic field and pressure effects on charge density wave, superconducting, and magnetic states in Lu5_5Ir4_4Si10_{10} and Er5_5Ir4_4Si10_{10}

    Full text link
    We have studied the charge-density-wave (CDW) state for the superconducting Lu5_5Ir4_4Si10_{10} and the antiferromagnetic Er5_5Ir4_4Si10_{10} as variables of temperature, magnetic field, and hydrostatic pressure. For Lu5_5Ir4_4Si10_{10}, the application of pressure strongly suppresses the CDW phase but weakly enhances the superconducting phase. For Er5_5Ir4_4Si10_{10}, the incommensurate CDW state is pressure independent and the commensurate CDW state strongly depends on the pressure, whereas the antiferromagnetic ordering is slightly depressed by applying pressure. In addition, Er5_5Ir4_4Si10_{10} shows negative magnetoresistance at low temperatures, compared with the positive magnetoresistance of Lu5_5Ir4_4Si10_{10}.Comment: 12 pages, including 6 figure

    Nonstationary Stochastic Resonance in a Single Neuron-Like System

    Full text link
    Stochastic resonance holds much promise for the detection of weak signals in the presence of relatively loud noise. Following the discovery of nondynamical and of aperiodic stochastic resonance, it was recently shown that the phenomenon can manifest itself even in the presence of nonstationary signals. This was found in a composite system of differentiated trigger mechanisms mounted in parallel, which suggests that it could be realized in some elementary neural networks or nonlinear electronic circuits. Here, we find that even an individual trigger system may be able to detect weak nonstationary signals using stochastic resonance. The very simple modification to the trigger mechanism that makes this possible is reminiscent of some aspects of actual neuron physics. Stochastic resonance may thus become relevant to more types of biological or electronic systems injected with an ever broader class of realistic signals.Comment: Plain Latex, 7 figure

    Study of the finite temperature transition in 3-flavor QCD using the R and RHMC algorithms

    Get PDF
    We study the finite temperature transition in QCD with three flavors of equal masses using the R and RHMC algorithm on lattices with temporal extent N_{\tau}=4 and 6. For the transition temperature in the continuum limit we find r_0 T_c=0.429(8) for the light pseudo-scalar mass corresponding to the end point of the 1st order transition region. When comparing the results obtained with the R and RHMC algorithms for p4fat3 action we see no significant step-size errors down to a lightest pseudo-scalar mass of m_{ps} r_0=0.4.Comment: 13 pages, RevTeX, 10 figure

    Systematics of electronic and magnetic properties in the transition metal doped Sb2_2Te3_3 quantum anomalous Hall platform

    Full text link
    The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically-doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here we report on a detailed and systematic investigation of transition-metal (TM)-doped Sb2_2Te3_3. By combining density functional theory (DFT) calculations with complementary experimental techniques, i.e., scanning tunneling microscopy (STM), resonant photoemission (resPES), and x-ray magnetic circular dichroism (XMCD), we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM-doped TIs. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V- and Fe-doped Sb2_2Te3_3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity-dependent and can vary from in-plane to out-of-plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM-doped Sb2_2Te3_3 in the ferromagnetic state.Comment: 40 pages, 13 figure

    The transition temperature in QCD

    Get PDF
    We present a detailed calculation of the transition temperature in QCD with two light and one heavier (strange) quark mass on lattices with temporal extent N_t =4 and 6. Calculations with improved staggered fermions have been performed for various light to strange quark mass ratios in the range, 0.05 <= m_l/m_s <= 0.5, and with a strange quark mass fixed close to its physical value. From a combined extrapolation to the chiral (m_l -> 0) and continuum (aT = 1/N_t -> 0) limits we find for the transition temperature at the physical point T_c r_0 = 0.457(7) where the scale is set by the Sommer-scale parameter r_0 defined as the distance in the static quark potential at which the slope takes on the value, (dV_qq(r)/dr)_r=r_0 = 1.65/r_0^2. Using the currently best known value for r_0 this translates to a transition temperature T_c = 192(7)(4)MeV. The transition temperature in the chiral limit is about 3% smaller. We discuss current ambiguities in the determination of T_c in physical units and also comment on the universal scaling behavior of thermodynamic quantities in the chiral limit.Comment: 18 pages, 14 EPS figures, replaced wrong entries in column 7 of Table A.

    Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    Full text link
    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from X-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c-axis of hexagonal-disc shape exactly matched the (10-10) and the (0001) directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.Comment: 5 pages, 3 figures. submitted to Phys. Rev.

    Optimizing the rheological properties of silica nano-modified bentonite mud using overlaid contour plot and estimation of maximum or upper shear stress limit.

    Get PDF
    An optimization based statistical (response surface) approach was used to evaluate the rheological properties of bentonite mud treated with silica nanoparticles. The overlaid contour plot established the feasible region for the various factor settings from multiple regression equations. The steepest method was used to further determine the optimal factor settings for minimum rheological properties and this was established at 6.3 wt.% bentonite content and 0.94 wt.% silica nanoparticles. The rheological properties of the bentonite mud containing and without silica nanoparticles was evaluated using a Hyperbolic (new) model and related with other oil industry based models: Herschel Bulkley, Sisko, Casson. The hyperbolic rheological model estimated the rheological behaviour of the nano-modified mud satisfactorily while also predicting a shear stress limit for the nano-modified mud. The maximum shear stress limit values for 6.3, 13 and 15 wt.% mud were 14.59, 61.74 and 107.4 Pa respectively. Upper shear stress values obtained from a 1.5 wt.% silica nanoparticle modified 6.3, 13 and 15 wt.% bentonite mud were 22.27, 72.62 and 171.3 Pa respectively, which represents an increment of 34.5 to 37.4% in the upper limit of shear stress. The effect of silica nanoparticles on the upper shear stress limit was quantified using a response surface design

    Escape from a metastable well under a time-ramped force

    Full text link
    Thermally activated escape of an over-damped particle from a metastable well under the action of a time-ramped force is studied. We express the mean first passage time (MFPT) as the solution to a partial differential equation, which we solve numerically for a model case. We discuss two approximations of the MFPT, one of which works remarkably well over a wide range of loading rates, while the second is easy to calculate and can provide a valuable first estimate.Comment: 9 pages, including 2 figure
    • …
    corecore