712 research outputs found

    Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds

    Full text link
    We present a study of the charge state conversion of single nitrogen-vacancy (NV) defects hosted in nanodiamonds (NDs). We first show that the proportion of negatively-charged NV^{-} defects, with respect to its neutral counterpart NV0^{0}, decreases with the size of the ND. We then propose a simple model based on a layer of electron traps located at the ND surface which is in good agreement with the recorded statistics. By using thermal oxidation to remove the shell of amorphous carbon around the NDs, we demonstrate a significant increase of the proportion of NV^{-} defects in 10-nm NDs. These results are invaluable for further understanding, control and use of the unique properties of negatively-charged NV defects in diamondComment: 6 pages, 4 figure

    High Efficiency Plastic Scintillator Detector with Wave-Length Shifting Fiber Readout for the GLAST Large Area Telescope

    Get PDF
    This paper describes the design and performance studies of the scintillator tile detectors for the Anti-Coincidence Detector (ACD) of the Large Area Telescope (LAT) on the Gamma ray Large Area Space Telescope (GLAST), scheduled for launch in early 2008. The scintillator tile detectors utilize wavelength shifting fibers and have dual photomultiplier tube (PMT) readout. The design requires highly efficient and uniform detection of singly charged relativistic particles over the tile area and must meet all requirements for a launch, as well as operation in a space environment. We present here the design of three basic types of tiles used in the ACD, ranging in size from approx.450 sq cm to approx.2500 sq cm, all 1 cm thick, with different shapes, and with photoelectron yield of approx. 20 photoelectrons per minimum ionizing particle (mip) at normal tile incidence, uniform over the tile area. Some tiles require flexible clear fiber cables up to 1.5 m long to deliver scintillator light to remotely located PMT

    Multigenerational pedigree analysis of wild individually marked black sparrowhawks suggests that dark plumage coloration is a dominant autosomal trait

    Get PDF
    The black sparrowhawk (Accipiter melanoleucus) is a color-polymorphic sub-Saharan raptor, with adults occurring in two discrete color morphs: dark and light. It has previously been suggested that plumage coloration is determined by a one-locus two-allele system, with the light allele being dominant over the dark allele. Here, we revisit that assumption with an extended dataset of 130 individuals and pedigree information from 75 individuals spanning five generations. We test the observed offspring phenotypic ratio against the expected ratio under the Hardy–Weinberg equilibrium and find significant deviations from the expected values. Contrary to the previous assumption, our data indicate that the dark allele is in fact dominant over the light allele. Similarly, the multigenerational pedigrees obtained are incompatible with a one-locus two-allele system, where the light allele is dominant but are consistent with a scenario where the dark allele is dominant instead. However, without knowledge of the underlying molecular basis of plumage polymorphism, uncertainty remains, and the intra-morph variation observed suggests that modifier genes or environmental factors may also be involved. Our study not only provides a foundation for future research on the adaptive function of color polymorphism in the species but also highlights the need for caution when drawing conclusions about the mode of inheritance in wild animal populations in the absence of genetic data, especially when one color variant is numerically much rarer than the other

    Multigenerational pedigree analysis of wild individually marked black sparrowhawks suggests that dark plumage coloration is a dominant autosomal trait

    Get PDF
    The black sparrowhawk (Accipiter melanoleucus) is a color-polymorphic sub-Saharan raptor, with adults occurring in two discrete color morphs: dark and light. It has previously been suggested that plumage coloration is determined by a one-locus two-allele system, with the light allele being dominant over the dark allele. Here, we revisit that assumption with an extended dataset of 130 individuals and pedigree information from 75 individuals spanning five generations. We test the observed offspring phenotypic ratio against the expected ratio under the Hardy- Weinberg equilibrium and find significant deviations from the expected values. Contrary to the previous assumption, our data indicate that the dark allele is in fact dominant over the light allele. Similarly, the multigenerational pedigrees obtained are incompatible with a one-locus two-allele system, where the light allele is dominant but are consistent with a scenario where the dark allele is dominant instead. However, without knowledge of the underlying molecular basis of plumage polymorphism, uncertainty remains, and the intra-morph variation observed suggests that modifier genes or environmental factors may also be involved. Our study not only provides a foundation for future research on the adaptive function of color polymorphism in the species but also highlights the need for caution when drawing conclusions about the mode of inheritance in wild animal populations in the absence of genetic data, especially when one color variant is numerically much rarer than the other.</p

    Modeling sediment mobilization using a distributed hydrological model coupled with a bank stability model

    Get PDF
    In addition to surface erosion, stream bank erosion and failure contributes significant sediment and sediment-bound nutrients to receiving waters during high flow events. However, distributed and mechanistic simulation of stream bank sediment contribution to sediment loads in a watershed has not been achieved. Here we present a full coupling of existing distributed watershed and bank stability models and apply the resulting model to the Mad River in central Vermont. We fully coupled the Bank Stability and Toe Erosion Model (BSTEM) with the Distributed Hydrology Soil Vegetation Model (DHSVM) to allow the simulation of stream bank erosion and potential failure in a spatially explicit environment. We demonstrate the model\u27s ability to simulate the impacts of unstable streams on sediment mobilization and transport within a watershed and discuss the model\u27s capability to simulate watershed sediment loading under climate change. The calibrated model simulates total suspended sediment loads and reproduces variability in suspended sediment concentrations at watershed and subbasin outlets. In addition, characteristics such as land use and road-to-stream ratio of subbasins are shown to impact the relative proportions of sediment mobilized by overland erosion, erosion of roads, and stream bank erosion and failure in the subbasins and watershed. This coupled model will advance mechanistic simulation of suspended sediment mobilization and transport from watersheds, which will be particularly valuable for investigating the potential impacts of climate and land use changes, as well as extreme events

    Insulin Glargine in the Intensive Care Unit: A Model-Based Clinical Trial Design

    Get PDF
    Online 4 Oct 2012Introduction: Current succesful AGC (Accurate Glycemic Control) protocols require extra clinical effort and are impractical in less acute wards where patients are still susceptible to stress-induced hyperglycemia. Long-acting insulin Glargine has the potential to be used in a low effort controller. However, potential variability in efficacy and length of action, prevent direct in-hospital use in an AGC framework for less acute wards. Method: Clinically validated virtual trials based on data from stable ICU patients from the SPRINT cohort who would be transferred to such an approach are used to develop a 24-hour AGC protocol robust to different Glargine potencies (1.0x, 1.5x and 2.0x regular insulin) and initial dose sizes (dose = total insulin over prior 12, 18 and 24 hours). Glycemic control in this period is provided only by varying nutritional inputs. Performance is assessed as %BG in the 4.0-8.0mmol/L band and safety by %BG<4.0mmol/L. Results: The final protocol consisted of Glargine bolus size equal to insulin over the previous 18 hours. Compared to SPRINT there was a 6.9% - 9.5% absolute decrease in mild hypoglycemia (%BG<4.0mmol/L) and up to a 6.2% increase in %BG between 4.0 and 8.0mmol/L. When the efficacy is known (1.5x assumed) there were reductions of: 27% BG measurements, 59% insulin boluses, 67% nutrition changes, and 6.3% absolute in mild hypoglycemia. Conclusion: A robust 24-48 clinical trial has been designed to safely investigate the efficacy and kinetics of Glargine as a first step towards developing a Glargine-based protocol for less acute wards. Ensuring robustness to variability in Glargine efficacy significantly affects the performance and safety that can be obtained
    corecore