4,214 research outputs found

    Neutrino Oscillations for Dummies

    Full text link
    The reality of neutrino oscillations has not really sunk in yet. The phenomenon presents us with purely quantum mechanical effects over macroscopic time and distance scales (milliseconds and 1000s of km). In order to help with the pedagogical difficulties this poses, I attempt here to present the physics in words and pictures rather than math. No disrespect is implied by the title; I am merely borrowing a term used by a popular series of self-help books

    Antiferromagnetic Alignment and Relaxation Rate of Gd Spins in the High Temperature Superconductor GdBa_2Cu_3O_(7-delta)

    Full text link
    The complex surface impedance of a number of GdBa2_2Cu3_3O7−δ_{7-\delta} single crystals has been measured at 10, 15 and 21 GHz using a cavity perturbation technique. At low temperatures a marked increase in the effective penetration depth and surface resistance is observed associated with the paramagnetic and antiferromagnetic alignment of the Gd spins. The effective penetration depth has a sharp change in slope at the N\'eel temperature, TNT_N, and the surface resistance peaks at a frequency dependent temperature below 3K. The observed temperature and frequency dependence can be described by a model which assumes a negligibly small interaction between the Gd spins and the electrons in the superconducting state, with a frequency dependent magnetic susceptibility and a Gd spin relaxation time τs\tau_s being a strong function of temperature. Above TNT_N, τs\tau_s has a component varying as 1/(T−TN)1 / (T - T_N), while below TNT_N it increases ∼T−5\sim T^{-5}.Comment: 4 Pages, 4 Figures. Submitted to Phys. Rev.

    Time dependence of current-voltage measurements of c-axis quasiparticle conductivity in 2212-BSCCO mesa structures

    Get PDF
    We report four-point IV measurements of the c-axis conductivity of mesa structures of 2212-BSCCO, using a system with sub-microsecond resolution along with multi-level pulses. These allow a test to be made for the presence of nonequilibrium effects. Our results suggest simple heating alone is important in measurements of this kind.Comment: to appear in proceedings of LT23; submitted to Physica

    PBO Fibres: from saliling design towards architectural performance

    Full text link
    p. 3013-3023PBO fibres, also called "high-performance" polymer fibres, are a group of materials known as "rigid rods". Through this work it is pretended to make some considerations about the use of these new generation fibres. Poly (p-phenylene-2.6-benzobisoxazole)(PBO) is rigid-rod isotropic crystal polymer. PBO fibre is a high performance fibre developed by TOYOBO (Japan) PBO fibre is quite flexible and has very soft handling, in spite of its extremely high mechanical properties. Over the past ten years Future Fibres Company has pioneered the use of PBO for yacht rigging and has proven it to provide remarkable performance and longevity. Their method of producing these PBO cables delivers the lightest, smallest cables available on the market today. The PBO cable is formed by combining the incredible properties of PBO (poly(p-phenylene-2,6- benzobisoxazole)) fibre with the simple yet undeniably reliable process of continuous winding. A PBO cable is dry fibre tightly compacted and does not rely on a resin matrix that, if impacted, can be compromised. The cover of the cable is a vital component and whilst PBO is an excellent material for yacht rigging purposes, due to its extreme strength, low elongation and general robustness it must be protected from sunlight and seawater. Future Fibres has perfected its cover design that comprises a consolidating film, environmental protection layer and a customizable braided cover that can be tailored to suit any specific application. PBO has great potential to be used in construction or rehabilitation applications. At the same time the fibres, following further testing, would open up several design opportunities for high quality architectural projects.Gough, CE.; Pobo Blasco, M.; Ruiz Checa, JR. (2009). PBO Fibres: from saliling design towards architectural performance. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/670

    Characteristic operator functions for quantum input-plant-output models and coherent control

    Get PDF
    We introduce the characteristic operator as the generalization of the usual concept of a transfer function of linear input-plant-output systems to arbitrary quantum nonlinear Markovian input-output models. This is intended as a tool in the characterization of quantum feedback control systems that fits in with the general theory of networks. The definition exploits the linearity of noise differentials in both the plant Heisenberg equations of motion and the differential form of the input-output relations. Mathematically, the characteristic operator is a matrix of dimension equal to the number of outputs times the number of inputs (which must coincide), but with entries that are operators of the plant system. In this sense the characteristic operator retains details of the effective plant dynamical structure and is an essentially quantum object. We illustrate the relevance to model reduction and simplification by showing that the convergence of the characteristic operator in adiabatic elimination limit models requires the same conditions and assumptions appearing in the work on limit quantum stochastic differential theorems of Bouten and Silberfarb. This approach also shows in a natural way that the limit coefficients of the quantum stochastic differential equations in adiabatic elimination problems arise algebraically as Schur complements, and amounts to a model reduction where the fast degrees of freedom are decoupled from the slow ones, and eliminated.Comment: 22 pages, 1 figure (To appear Journal Mathematical Physics, January 2015

    Clinical impact of double protease inhibitor boosting with Lopinavir/Ritonavir and Amprenavir as part of salvage antiretroviral therapy

    Get PDF
    Purpose: Double protease inhibitor (PI) boosting is being explored as a new strategy in salvage antiretroviral (ARV) therapy. However, if a negative drug interaction leads to decreased drug levels of either or both PIs, double PI boosting could lead to decreased virologic response. A negative drug interaction has been described between amprenavir (APV) and lopinavir/ritonavir (LPV/r). This observational cohort study assessed the virologic impact of the addition of APV to a salvage ARV regimen, which also contains LPV/r, compared to a regimen containing LPV/r alone. Method: Patients initiated on a salvage ARV regimen that included LPV/r obtained from the expanded access program in Toronto, Canada, were evaluated. APV (600-1,200 mg bid) was added at the discretion of the treating physician. Results: Using multivariate Cox proportional hazards models, we found that the addition of APV to a LPV/r-containing salvage regimen was not significantly associated with time to virologic suppression (< 50 copies/mL; adjusted hazard ratio [HR] = 0.75, p = .12) or with time to virologic rebound (adjusted HR = 1.46, p = .34). Those patients who received higher doses of APV had an increased chance of virologic suppression (p = .03). In a subset of 27 patients, the median LPV Ctrough was significantly lower in patients receiving APV (p = .04), and the median APV Ctrough was reduced compared to reported controls. Conclusion: Our data do not support an additional benefit in virologic reduction of double boosting with APV and LPV/r relative to LPV/r alone in salvage ARV therapy. Our study's limitations include its retrospective nature and the imbalance between the two groups potentially confounding the results. Although these factors were adjusted for in the multivariate analysis, a prospective randomized controlled trial is warranted to confirm our findings

    Methods for differentiating prion types in food-producing animals

    Get PDF
    Prions are an enigma amongst infectious disease agents as they lack a genome yet confer specific pathologies thought to be dictated mainly, if not solely, by the conformation of the disease form of the prion protein (PrPSc). Prion diseases affect humans and animals, the latter including the food-producing ruminant species cattle, sheep, goats and deer. Importantly, it has been shown that the disease agent of bovine spongiform encephalopathy (BSE) is zoonotic, causing variant Creutzfeldt Jakob disease (vCJD) in humans. Current diagnostic tests can distinguish different prion types and in food- producing animals these focus on the differentiation of BSE from the non-zoonotic agents. Whilst BSE cases are now rare, atypical forms of both scrapie and BSE have been reported, as well as two types of chronic wasting disease (CWD) in cervids. Typing of animal prion isolates remains an important aspect of prion diagnosis and is now becoming more focused on identifying the range of prion types that are present in food-producing animals and also developing tests that can screen for emerging, novel prion diseases. Here, we review prion typing methodologies in light of current and emerging prion types in food-producing animals

    Classical 5D fields generated by a uniformly accelerated point source

    Full text link
    Gauge fields associated with the manifestly covariant dynamics of particles in (3,1)(3,1) spacetime are five-dimensional. In this paper we explore the old problem of fields generated by a source undergoing hyperbolic motion in this framework. The 5D fields are computed numerically using absolute time Ï„\tau-retarded Green-functions, and qualitatively compared with Maxwell fields generated by the same motion. We find that although the zero mode of all fields coincides with the corresponding Maxwell problem, the non-zero mode should affect, through the Lorentz force, the observed motion of test particles.Comment: 36 pages, 8 figure

    Regular modes in rotating stars

    Full text link
    Despite more and more observational data, stellar acoustic oscillation modes are not well understood as soon as rotation cannot be treated perturbatively. In a way similar to semiclassical theory in quantum physics, we use acoustic ray dynamics to build an asymptotic theory for the subset of regular modes which are the easiest to observe and identify. Comparisons with 2D numerical simulations of oscillations in polytropic stars show that both the frequency and amplitude distributions of these modes can accurately be described by an asymptotic theory for almost all rotation rates. The spectra are mainly characterized by two quantum numbers; their extraction from observed spectra should enable one to obtain information about stellar interiors.Comment: 5 pages, 4 figures, discussion adde
    • …
    corecore