55 research outputs found

    Two European Cornus L. feeding leafmining moths, Antispila petryi Martini, 1899, sp. rev. and A. treitschkiella (Fischer von Röslerstamm, 1843) (Lepidoptera, Heliozelidae): an unjustified synonymy and overlooked range expansion

    Get PDF
    Antispila treitschkiella (Fischer von Röslerstamm, 1843) and A. petryi Martini, 1899, sp. rev. were regarded as synonymous since 1978, but are shown to be two clearly separated species with different hostplants, life histories, DNA barcodes and morphology. Antispila treitschkiella feeds on Cornus mas L., is bivoltine, and has, by following its ornamentally planted host, greatly expanded its range in north-western Europe. In contrast A. petryi feeds on the widespread native C. sanguinea L., is univoltine, and is one of only two Antispila species previously resident in the British Isles, the Netherlands and northern Europe. Consequently, the increase in abundance of A. treitschkiella in the Netherlands since the early 1990s and in Great Britain in recent years must be regarded as part of a recent expansion into north-western Europe, whereas the native A. petryi is hardly expanding and less abundant. In Britain, detailed surveys of parks and living collections confirmed the monophagy of these two species. A search of British herbarium samples provided no evidence for an earlier date of establishment. Information on recognition of all stages, including DNA barcodes, and distribution is provided, and these two species are compared with the third European Cornus L. leafminer, A. metallella (Denis & Schiffermüller, 1775)

    Antispila oinophylla new species (Lepidoptera, Heliozelidae), a new North American grapevine leafminer invading Italian vineyards: taxonomy, DNA barcodes and life cycle

    Get PDF
    A grapevine leafminer Antispila oinophylla van Nieukerken & Wagner, sp. n., is described both from eastern North America (type locality: Georgia) and as a new important invader in North Italian vineyards (Trentino and Veneto Region) since 2006. The species is closely related to, and previously confused with A. ampelopsifoliella Chambers, 1874, a species feeding on Virginia creeper Parthenocissus quinquefolia (L.) Planchon., and both are placed in an informal A. ampelopsifoliella group. Wing pattern, genitalia, and DNA barcode data all confirm the conspecificity of native North American populations and Italian populations. COI barcodes differ by only 0–1.23%, indicating that the Italian populations are recently established from eastern North America. The new species feeds on various wild Vitis species in North America, on cultivated Vitis vinifera L. in Italy, and also on Parthenocissus quinquefolia in Italy. North American Antispila feeding on Parthenocissus include at least two other species, one of which is A. ampelopsifoliella. Morphology and biology of the new species are contrasted with those of North American Antispila Hübner, 1825 species and European Holocacista rivillei (Stainton, 1855). The source population of the introduction is unknown, but cases with larvae or pupae, attached to imported plants, are a likely possibility. DNA barcodes of the three European grapevine leafminers and those of all examined Heliozelidae are highly diagnostic. North American Vitaceae-feeding Antispila form two species complexes and include several as yet unnamed taxa. The identity of three out of the four previously described North American Vitaceae-feeding species cannot be unequivocally determined without further revision, but these are held to be different from A. oinophylla. In Italy the biology of A. oinophylla was studied in a vineyard in the Trento Province (Trentino-Alto Adige Region) in 2008 and 2009. Mature larvae overwinter inside their cases, fixed to vine trunks or training stakes. The first generation flies in June. An additional generation occurs from mid-August onwards. The impact of the pest in this vineyard was significant with more than 90% of leaves infested in midsummer. Since the initial discovery in 2006, the pest spread to several additional Italian provinces, in 2010 the incidence of infestation was locally high in commercial vineyards. Preliminary phylogenetic analyses suggest that Antispila is paraphyletic, and that the Antispila ampelopsifoliella group is related to Coptodisca Walsingham, 1895, Holocacista Walsingham & Durrant, 1909 and Antispilina Hering, 1941, all of which possess reduced wing venation. Vitaceae may be the ancestral hostplant family for modern Heliozelidae

    Resting-state functional MRI shows altered default-mode network functional connectivity in Duchenne muscular dystrophy patients

    Get PDF
    Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder caused by absence of dystrophin protein. Dystrophin is expressed in muscle, but also in the brain. Difficulties with attention/inhibition, working memory and information processing are well described in DMD patients but their origin is poorly understood. The default mode network (DMN) is one of the networks involved in these processes. Therefore we aimed to assess DMN connectivity in DMD patients compared to matched controls, to better understand the cognitive profile in DMD. T1-weighted and resting state functional MRI scans were acquired from 33 DMD and 24 male age-matched controls at two clinical sites. Scans were analysed using FMRIB Software Library (FSL). Differences in the DMN were assessed using FSL RANDOMISE, with age as covariate and threshold-free cluster enhancement including multiple comparison correction. Post-hoc analyses were performed on the visual network, executive control network and fronto-parietal network with the same methods. In DMD patients, the level of connectivity was higher in areas within the control DMN (hyperconnectivity) and significant connectivity was found in areas outside the control DMN. No hypoconnectivity was found and no differences in the visual network, executive control network and fronto-parietal network. We showed differences both within and in areas outside the DMN in DMD. The specificity of our findings to the DMN can help provide a better understanding of the attention/inhibition, working memory and information processing difficulties in DMD.Neuro Imaging Researc

    EMQN best practice guidelines for genetic testing in dystrophinopathies.

    Get PDF
    Dystrophinopathies are X-linked diseases, including Duchenne muscular dystrophy and Becker muscular dystrophy, due to DMD gene variants. In recent years, the application of new genetic technologies and the availability of new personalised drugs have influenced diagnostic genetic testing for dystrophinopathies. Therefore, these European best practice guidelines for genetic testing in dystrophinopathies have been produced to update previous guidelines published in 2010.These guidelines summarise current recommended technologies and methodologies for analysis of the DMD gene, including testing for deletions and duplications of one or more exons, small variant detection and RNA analysis. Genetic testing strategies for diagnosis, carrier testing and prenatal diagnosis (including non-invasive prenatal diagnosis) are then outlined. Guidelines for sequence variant annotation and interpretation are provided, followed by recommendations for reporting results of all categories of testing. Finally, atypical findings (such as non-contiguous deletions and dual DMD variants), implications for personalised medicine and clinical trials and incidental findings (identification of DMD gene variants in patients where a clinical diagnosis of dystrophinopathy has not been considered or suspected) are discussed

    Branching out: the role of host plants in the diversification of leaf-mining moths

    Get PDF
    In this thesis, I studied the diversification patterns of two groups of leaf mining Lepidoptera: Nepticulidae and Lithocolletinae (Gracillariidae). Both are found on all continents except Antarctica and are species-rich, but to different extents in different lineages and their centres of diversity are in different biogeographic regions, even though they predominantly feed on similar host plant families. The research I performed focused on comparing their species-level phylogenetic diversification patterns, based on a dataset that included the majority of their global diversity, to understand common factors that have driven their evolution

    Explosieve verspreiding van de lindevouwmot: nu ook in Nederland?

    No full text
    Een recente vondst van de lindevouwmot (Phyllonorycter issikii) in Zuid-Holland duidt op een sterke uitbreiding van de soort in Nederland, die voorheen alleen uit de omgeving van Roermond bekend was. Dit sluit aan op de Europese verspreidingsgeschiedenis van Ph. issikii, met een gestage uitbreiding vanuit het oosten richting het westen sinds de jaren 1980. De herkenning van de soort, met name van de rupsen en de bladmijnen die zij maken op lindes, wordt besproken en tegelijk wordt er opgeroepen om vondsten te melden. De vraat aan lindes (Tilia) blijft in de meeste gevallen beperkt en zorgt niet voor verkleuring van het blad

    A global phylogeny of leafmining Ectoedemia moths (Lepidoptera: Nepticulidae): host plant family shifts and allopatry as drivers of speciation

    Get PDF
    Background Host association patterns in Ectoedemia (Lepidoptera: Nepticulidae) are also encountered in other insect groups with intimate plant relationships, including a high degree of monophagy, a preference for ecologically dominant plant families (e.g. Fagaceae, Rosaceae, Salicaceae, and Betulaceae) and a tendency for related insect species to feed on related host plant species. The evolutionary processes underlying these patterns are only partly understood, we therefore assessed the role of allopatry and host plant family shifts in speciation within Ectoedemia. Methodology Six nuclear and mitochondrial DNA markers with a total aligned length of 3692 base pairs were used to infer phylogenetic relationships among 92 species belonging to the subgenus Ectoedemia of the genus Ectoedemia, representing a thorough taxon sampling with a global coverage. The results support monophyletic species groups that are congruent with published findings based on morphology. We used the obtained phylogeny to explore host plant family association and geographical distribution to investigate if host shifts and allopatry have been instrumental in the speciation of these leafmining insects. Significance We found that, even though most species within species groups commonly feed on plants from one family, shifts to a distantly related host family have occasionally occurred throughout the phylogeny and such shifts are most commonly observed towards Betulaceae. The largest radiations have occurred within species groups that feed on Fagaceae, Rosaceae, and Salicaceae. Most species are restricted to one of the seven global biogeographic regions, but within species groups representatives are commonly found in different biogeographic regions. Although we find general patterns with regard to host use and biogeography, there are differences between clades that suggest that different drivers of speciation, and perhaps drivers that we did not examine, have shaped diversity patterns in different clades

    A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin

    No full text
    With phylogenetic knowledge of Lepidoptera rapidly increasing, catalysed by increasingly powerful molecular techniques, the demand for fossil calibration points to estimate an evolutionary timeframe for the order is becoming an increasingly pressing issue. The family Nepticulidae is a species rich, basal branch within the phylogeny of the Lepidoptera, characterized by larval leaf-mining habits, and thereby represents a potentially important lineage whose evolutionary history can be established more thoroughly with the potential use of fossil calibration points. Using our experience with extant global Nepticulidae, we discuss a list of characters that may be used to assign fossil leaf mines to Nepticulidae, and suggest useful methods for classifying relevant fossil material. We present a checklist of 79 records of Nepticulidae representing adult and leaf-mine fossils mentioned in literature, often with multiple exemplars constituting a single record. We provide our interpretation of these fossils. Two species now are included in the collective generic name Stigmellites: Stigmellites resupinata (Krassilov, 2008) comb. nov. (from Ophiheliconoma) and Stigmellites almeidae (Martins-Neto, 1989) comb. nov. (from Nepticula). Eleven records are for the first time attributed to Nepticulidae. After discarding several dubious records, including one possibly placing the family at a latest Jurassic position, we conclude that the oldest fossils likely attributable to Nepticulidae are several exemplars representing a variety of species from the Dakota Formation (USA). The relevant strata containing these earliest fossils are now dated at 102 Ma (million years ago) in age, corresponding to the latest Albian Stage of the Early Cretaceous. Integration of all records in the checklist shows that a continuous presence of nepticulid-like leaf mines preserved as compression–impression fossils and by amber entombment of adults have a fossil record extending to the latest Early Cretaceous
    • …
    corecore