15 research outputs found

    Deployment of AI-based RBF network for photovoltaics fault detection procedure

    Get PDF
    In this paper, a fault detection algorithm for photovoltaic systems based on artificial neural networks (ANN) is proposed. Although, a rich amount of research is available in the field of PV fault detection using ANN, this paper presents a novel methodology based on only two inputs for the training, validating and testing of the Radial Basis Function (RBF) network achieving unprecedented detection accuracy of 98.1%. The proposed methodology goes beyond data normalisation and implements a ‘mapping of inputs’ approach to the data set before exposing it to the network for training. The accuracy of the proposed network is further endorsed through testing of the network in partial shading and overcast conditions

    Application of classification methods in fault detection and diagnosis of inverter fed induction machine drive: a trend towards reliability

    No full text
    The aim of this paper is to present a method of detection and isolation of intermittent misfiring in power switches of a three phase inverter feeding an induction machine drive. The detection and diagnosis procedure is based solely on the output currents of the inverter flowing into the machine windings. The measured currents are transformed in the two dimensional frame obtained with the Concordia transform. The data are then treated by a time-average method. The results even promising lack of accuracy mainly in the fault isolation step. To enhance the fault detection and diagnosis by the use of the information enclosed in the data, a Principal Component Analysis classifier is applied. The detection of a fault occurrence is made by a two-class classifier. The isolation is a two-step approach which uses the Linear Discriminant Analysis; the first is to identify the faulty leg with a three-class classifier and the second one discriminates the faulty power switch. Both methods are evaluated with experimental data and pattern recognition method proves its effectiveness and accuracy in the faulty leg detection and isolation
    corecore