176 research outputs found

    Association between fat-soluble vitamins and self-reported health status: A cross-sectional analysis of the MARK-AGE cohort

    Get PDF
    Self-rated health (SRH) is associated with higher risk of death. Since low plasma levels of fat-soluble vitamins are related to mortality, we aimed to assess whether plasma concentrations of vitamins A, D and E were associated with SRH in the MARK-AGE study. We included 3158 participants (52% female) aged between 35-75 years. Cross-sectional data were collected via questionnaires. An enzyme immunoassay quantified 25-hydroxyvitamin D and HPLC determined α-tocopherol and retinol plasma concentrations. The median 25-hydroxyvitamin D and retinol concentrations differed significantly (P<0.001) between SRH categories, and were lower in the combined fair/poor category versus the excellent, very good, good categories (25-hydroxvitamin D: 40.8 vs. 51.9, 49.3, 46.7 nmol/l, respectively; retinol: 1.67 vs. 1.75, 1.74, 1.70 μmol/l, respectively). Both vitamin D and retinol status were independently associated with fair/poor SRH in multiple regression analyses: adjusted ORs (95% CI) for the vitamin D insufficiency, deficiency, severe deficiency categories were 1.33 (1.06-1.68), 1.50 (1.17-1.93), and 1.83 (1.34-2.50) respectively; P=0.015, P=0.001, P<0.001, and for the second/third/fourth retinol quartiles: 1.44 (1.18-1.75), 1.57 (1.28-1.93), 1.49 (1.20-1.84); all P<0.001. No significant associations were reported for α-tocopherol quartiles. Lower vitamin A and D status emerged as independent markers for fair/poor SRH. Further insights into the long-term implications of these modifiable nutrients on health status are warranted

    Bacterial DNAemia in Older Participants and Nonagenarian Offspring and Association With Redox Biomarkers: Results From MARK-AGE Study

    Get PDF
    Aging and age-related diseases have been linked to microbial dysbiosis with changes in blood bacterial DNA concentration. This condition may promote chronic low-grade inflammation, which can be further aggravated by antioxidant nutrient deficiency. Low plasma carotenoids are associated with an increased risk of inflammation and cellular damage and predict mortality. However, no evidence is yet available on the relationship between antioxidants and the blood bacterial DNA (BB-DNA). Therefore, this study aimed to compare BB-DNA from (a) GO (nonagenarian offspring), (b) age-matched controls (Randomly recruited Age-Stratified Individuals from the General population [RASIG]), and (c) spouses of GO (SGO) recruited in the MARK-AGE project, as well as to investigate the association between BB-DNA, behavior habits, Charlson Comorbidity Index (CCI), leucocyte subsets, and the circulating levels of some antioxidants and oxidative stress markers. BB-DNA was higher in RASIG than GO and SGO, whereas GO and SGO participants showed similar values. BB-DNA increased in smokers and males with CCI >= 2 compared with those with CCI <= 1 within RASIG. Moreover, BB-DNA was positively associated with lymphocyte, neutrophil, and monocyte counts, but not with self-reported dietary habits. Higher quartiles of BB-DNA were associated with low lutein and zeaxanthin and elevated malondialdehyde plasma concentrations in RASIG. BB-DNA was also positively correlated with nitric oxide levels. Herein, we provide evidence of a reduced BB-DNA in individuals from long-living families and their spouses, suggesting a decreased microbial dysbiosis and bacterial systemic translocation. BB-DNA was also associated with smoking, CCI, leukocyte subsets, and some redox biomarkers in older participants

    Association of Torquetenovirus Viremia with Physical Frailty and Cognitive Impairment in Three Independent European Cohorts

    Get PDF
    Introduction: Immunosenescence and inflammaging have been implicated in the pathophysiology of frailty. Torquetenovirus (TTV), a single-stranded DNA anellovirus, the major component of the human blood virome, shows an increased replication rate with advancing age. An elevated TTV viremia has been associated with an impaired immune function and an increased risk of mortality in the older population. The objective of this study was to analyze the relation between TTV viremia, physical frailty, and cognitive impairment. Methods: TTV viremia was measured in 1,131 nonfrail, 45 physically frail, and 113 cognitively impaired older adults recruited in the MARK-AGE study (overall mean age 64.7 ± 5.9 years), and then the results were checked in two other independent cohorts from Spain and Portugal, including 126 frail, 252 prefrail, and 141 nonfrail individuals (overall mean age: 77.5 ± 8.3 years). Results: TTV viremia ≥4log was associated with physical frailty (OR: 4.69; 95% CI: 2.06-10.67, p < 0.0001) and cognitive impairment (OR: 3.49, 95% CI: 2.14-5.69, p < 0.0001) in the MARK-AGE population. The association between TTV DNA load and frailty status was confirmed in the Spanish cohort, while a slight association with cognitive impairment was observed (OR: 1.33; 95% CI: 1.000-1.773), only in the unadjusted model. No association between TTV load and frailty or cognitive impairment was found in the Portuguese sample, although a negative association between TTV viremia and MMSE score was observed in Spanish and Portuguese females. Conclusions: These findings demonstrate an association between TTV viremia and physical frailty, while the association with cognitive impairment was observed only in the younger population from the MARK-AGE study. Further research is necessary to clarify TTV's clinical relevance in the onset and progression of frailty and cognitive decline in older individuals

    UHRF genes regulate programmed interdigital tissue regression and chondrogenesis in the embryonic limb

    Get PDF
    The primordium of the limb contains a number of progenitors far superior to those necessary to form the skeletal components of this appendage. During the course of development, precursors that do not follow the skeletogenic program are removed by cell senescence and apoptosis. The formation of the digits provides the most representative example of embryonic remodeling via cell degeneration. In the hand/foot regions of the embryonic vertebrate limb (autopod), the interdigital tissue and the zones of interphalangeal joint formation undergo massive degeneration that accounts for jointed and free digit morphology. Developmental senescence and caspase-dependent apoptosis are considered responsible for these remodeling processes. Our study uncovers a new upstream level of regulation of remodeling by the epigenetic regulators Uhrf1 and Uhrf2 genes. These genes are spatially and temporally expressed in the pre-apoptotic regions. UHRF1 and UHRF2 showed a nuclear localization associated with foci of methylated cytosine. Interestingly, nuclear labeling increased in cells progressing through the stages of degeneration prior to TUNEL positivity. Functional analysis in cultured limb skeletal progenitors via the overexpression of either UHRF1 or UHRF2 inhibited chondrogenesis and induced cell senescence and apoptosis accompanied with changes in global and regional DNA methylation. Uhrfs modulated canonical cell differentiation factors, such as Sox9 and Scleraxis, promoted apoptosis via up-regulation of Bak1, and induced cell senescence, by arresting progenitors at the S phase and upregulating the expression of p21. Expression of Uhrf genes in vivo was positively modulated by FGF signaling. In the micromass culture assay Uhrf1 was down-regulated as the progenitors lost stemness and differentiated into cartilage. Together, our findings emphasize the importance of tuning the balance between cell differentiation and cell stemness as a central step in the initiation of the so-called ?embryonic programmed cell death? and suggest that the structural organization of the chromatin, via epigenetic modifications, may be a precocious and critical factor in these regulatory events.Funding: We thank Montse Fernandez Calderon, Susana Dawalibi, and Sonia Perez Mantecon, for excellent technical assistance. This work was supported by a Grant (BFU2017-84046-P) from the Spanish Science and Innovation Ministry to J.A.M

    Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genotoxic stress, such as by exposure to bromodeoxyuridine (BrdU) and cigarette smoke, induces premature cell senescence. Recent evidence indicates that cellular senescence of various types of cells is accelerated in COPD patients. However, whether the senescence of airway epithelial cells contributes to the development of airway diseases is unknown. The present study was designed to test the hypothesis that premature senescence of airway epithelial cells (Clara cells) impairs repair processes and exacerbates inflammation after airway injury.</p> <p>Methods</p> <p>C57/BL6J mice were injected with the Clara-cell-specific toxicant naphthalene (NA) on days 0, 7, and 14, and each NA injection was followed by a daily dose of BrdU on each of the following 3 days, during which regenerating cells were allowed to incorporate BrdU into their DNA and to senesce. The p38 MAPK inhibitor SB202190 was injected 30 minutes before each BrdU dose. Mice were sacrificed at different times until day 28 and lungs of mice were obtained to investigate whether Clara cell senescence impairs airway epithelial regeneration and exacerbates airway inflammation. NCI-H441 cells were induced to senesce by exposure to BrdU or the telomerase inhibitor MST-312. Human lung tissue samples were obtained from COPD patients, asymptomatic smokers, and nonsmokers to investigate whether Clara cell senescence is accelerated in the airways of COPD patients, and if so, whether it is accompanied by p38 MAPK activation.</p> <p>Results</p> <p>BrdU did not alter the intensity of the airway epithelial injury or inflammation after a single NA exposure. However, after repeated NA exposure, BrdU induced epithelial cell (Clara cell) senescence, as demonstrated by a DNA damage response, p21 overexpression, increased senescence-associated β-galactosidase activity, and growth arrest, which resulted in impaired epithelial regeneration. The epithelial senescence was accompanied by p38 MAPK-dependent airway inflammation. Senescent NCI-H441 cells impaired epithelial wound repair and secreted increased amounts of pro-inflammatory cytokines in a p38 MAPK-dependent manner. Clara cell senescence in COPD patients was accelerated and accompanied by p38 MAPK activation.</p> <p>Conclusions</p> <p>Senescence of airway epithelial cells impairs repair processes and exacerbates p38 MAPK-dependent inflammation after airway injury, and it may contribute to the pathogenesis of COPD.</p

    Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells

    Get PDF
    BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naive cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGF beta/SMAD (transforming growth factor-beta/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naive cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib sensitivity, reducing or even inhibiting the acquired chemoresistance in melanoma patients.Fapesp-grant number 2012/04194-1, 2013/05172-4, 2014/24400-0 and 2015/10821-7, CNPq-grant number 150447/2013-2 and 471512/2013-3 and PRODOC-grant no 3193-32/2010. Work in the lab of KS Smalley was supported by the National Institutes of Health grants R01 CA161107, R21 CA198550, and Skin SPORE grant P50 CA168536info:eu-repo/semantics/publishedVersio

    Microbiome in blood samples from the general population recruited in the MARK-AGE project: a pilot study

    Get PDF
    The presence of circulating microbiome in blood has been reported in both physiological and pathological conditions, although its origins, identities and function remain to be elucidated. This study aimed to investigate the presence of blood microbiome by quantitative real-time PCRs targeting the 16S rRNA gene. To our knowledge, this is the first study in which the circulating microbiome has been analyzed in such a large sample of individuals since the study was carried out on 1285 Randomly recruited Age-Stratified Individuals from the General population (RASIG). The samples came from several different European countries recruited within the EU Project MARK-AGE in which a series of clinical biochemical parameters were determined. The results obtained reveal an association between microbial DNA copy number and geographic origin. By contrast, no gender and age-related difference emerged, thus demonstrating the role of the environment in influencing the above levels independent of age and gender at least until the age of 75. In addition, a significant positive association was found with Free Fatty Acids (FFA) levels, leukocyte count, insulin, and glucose levels. Since these factors play an essential role in both health and disease conditions, their association with the extent of the blood microbiome leads us to consider the blood microbiome as a potential biomarker of human health.Molecular Epidemiolog

    Inhibition of Mesothelin as a Novel Strategy for Targeting Cancer Cells

    Get PDF
    Mesothelin, a differentiation antigen present in a series of malignancies such as mesothelioma, ovarian, lung and pancreatic cancer, has been studied as a marker for diagnosis and a target for immunotherapy. We, however, were interested in evaluating the effects of direct targeting of Mesothelin on the viability of cancer cells as the first step towards developing a novel therapeutic strategy. We report here that gene specific silencing for Mesothelin by distinct methods (siRNA and microRNA) decreased viability of cancer cells from different origins such as mesothelioma (H2373), ovarian cancer (Skov3 and Ovcar-5) and pancreatic cancer (Miapaca2 and Panc-1). Additionally, the invasiveness of cancer cells was also significantly decreased upon such treatment. We then investigated pro-oncogenic signaling characteristics of cells upon mesothelin-silencing which revealed a significant decrease in phospho-ERK1 and PI3K/AKT activity. The molecular mechanism of reduced invasiveness was connected to the reduced expression of β-Catenin, an important marker of EMT (epithelial-mesenchymal transition). Ero1, a protein involved in clearing unfolded proteins and a member of the ER-Stress (endoplasmic reticulum-stress) pathway was also markedly reduced. Furthermore, Mesothelin silencing caused a significant increase in fraction of cancer cells in S-phase. In next step, treatment of ovarian cancer cells (OVca429) with a lentivirus expressing anti-mesothelin microRNA resulted in significant loss of viability, invasiveness, and morphological alterations. Therefore, we propose the inhibition of Mesothelin as a potential novel strategy for targeting human malignancies

    The bank lending channel: an empirical assessment of measures to stimulate bank lending in the European Union

    Get PDF
    This thesis first examines the role of banks in the transmission mechanism of monetary policy by focusing on the eight European new member States of Central and Eastern Europe over the 2004-2013 period. We specifically investigate the influence of monetary policy changes on bank lending activity and if this potential influence is contingent on bank characteristics, such as banks’ size, capital, liquidity, risk factor and market power. Moreover, we focus on the prospective role of banks in the monetary policy transmission mechanism in order to reveal any clear trends in banks’ lending behaviour during the 2008-2011 financial crisis. Secondly, we investigate the impact of a protracted period of low monetary policy rates on loosening of banks’ credit standards regarding enterprises, households and consumer loans through concentrating on the nine Eurozone countries involved since the initiation of the Euro area Bank Lending Survey in the three distinct time frames of pre- (2002Q4-2008Q3), mid- (2008Q4-2010Q4) and post- (2011Q1-2014:Q4) financial crisis. Furthermore, we test the fundamental concept of the risk taking channel by examining excessive risk-taking behaviour by banks in stressed vs. non-stressed countries of the Eurozone. In an additional analysis, the efficacy of the European Central Bank’s 3 year Long-Term Refinancing Operations is evaluated in great depth in order to determine whether banks’ credit standards have been softened and the degree to which demand for loans has increased. Thirdly, we explore the financing structure of bank lending constrained Small and Medium Sized Enterprises in the eleven Eurozone countries by utilising firm-level data over the period of 2009 to 2014. We estimate if bank lending constrained firms demonstrate relatively more usage or requests for alternative financing. Additionally, a comprehensive investigation is presented by unveiling the impact and determinants of various financing constraints including credit lines, bank loans, trade credit and other lending on Eurozone firms. Furthermore, the notion of discouraged borrowers originally formulated by Kon and Storey (2003) is empirically evaluated. Finally, we present the conclusion of our research by further outlining its limitations and prospective scope for future studie

    Ageing affects subtelomeric DNA methylation in blood cells from a large European population enrolled in the MARK-AGE study

    Get PDF
    Ageing leaves characteristic traces in the DNA methylation make-up of the genome. However, the importance of DNA methylation in ageing remains unclear. The study of subtelomeric regions could give promising insights into this issue. Previously reported associations between susceptibility to age-related diseases and epigenetic instability at subtelomeres suggest that the DNA methylation profile of subtelomeres undergoes remodelling during ageing. In the present work, this hypothesis has been tested in the context of the European large-scale project MARK-AGE. In this cross-sectional study, we profiled the DNA methylation of chromosomes 5 and 21 subtelomeres, in more than 2000 age-stratified women and men recruited in eight European countries. The study included individuals from the general population as well as the offspring of nonagenarians and Down syndrome subjects, who served as putative models of delayed and accelerated ageing, respectively. Significant linear changes of subtelomeric DNA methylation with increasing age were detected in the general population, indicating that subtelomeric DNA methylation changes are typical signs of ageing. Data also show that, compared to the general population, the dynamics of age-related DNA methylation changes are attenuated in the offspring of centenarian, while they accelerate in Down syndrome individuals. This result suggests that subtelomeric DNA methylation changes reflect the rate of ageing progression. We next attempted to trace the age-related changes of subtelomeric methylation back to the influence of diverse variables associated with methylation variations in the population, including demographics, dietary/health habits and clinical parameters. Results indicate that the effects of age on subtelomeric DNA methylation are mostly independent of all other variables evaluated.Molecular Epidemiolog
    corecore