174 research outputs found

    Quantum Quench of an Atomic Mott Insulator

    Full text link
    We study quenches across the Bose-Hubbard Mott-insulator-to-superfluid quantum phase transition using an ultra-cold atomic gas trapped in an optical lattice. Quenching from the Mott insulator to superfluid phase is accomplished by continuously tuning the ratio of Hubbard tunneling to interaction energy. Excitations of the condensate formed after the quench are measured using time-of-flight imaging. We observe that the degree of excitation is proportional to the fraction of atoms that cross the phase boundary, and that the quantity of excitations and energy produced during the quench have a power-law dependence on the quench rate. These phenomena suggest an excitation process analogous to the Kibble-Zurek (KZ) mechanism for defect generation in non-equilibrium classical phase transitions

    Supervised fully polarimetric classification of the Black Forest test site: From MAESTROI to MAC Europe

    Get PDF
    A study on the performance of a supervised fully polarimetric maximum likelihood classifier for synthetic aperture radar (SAR) data when applied to a specific classification context: forest classification based on age classes and in the presence of a sloping terrain is presented. For the experimental part, the polarimetric AIRSAR data at P, L, and C-band, acquired over the German Black Forest near Freiburg in the frame of the 1989 MAESTRO-1 campaign and the 1991 MAC Europe campaign was used, MAESTRO-1 with an ESA/JRC sponsored campaign, and MAC Europe (Multi-sensor Aircraft Campaign); in both cases the multi-frequency polarimetric JPL Airborne Synthetic Aperture Radar (AIRSAR) radar was flown over a number of European test sites. The study is structured as follows. At first, the general characteristics of the classifier and the dependencies from some parameters, like frequency bands, feature vector, calibration, using test areas lying on a flat terrain are investigated. Once it is determined the optimal conditions for the classifier performance, we then move on to the study of the slope effect. The bulk of this work is performed using the Maestrol data set. Next the classifier performance with the MAC Europe data is considered. The study is divided into two stages: first some of the tests done on the Maestro data are repeated, to highlight the improvements due to the new processing scheme that delivers 16 look data. Second we experiment with multi images classification with two goals: to assess the possibility of using a training set measured from one image to classify areas in different images; and to classify areas on critical slopes using different viewing angles. The main points of the study are listed and some of the results obtained so far are highlighted

    Signatures of the superfluid to Mott insulator transition in equilibrium and in dynamical ramps

    Get PDF
    We investigate the equilibrium and dynamical properties of the Bose-Hubbard model and the related particle-hole symmetric spin-1 model in the vicinity of the superfluid to Mott insulator quantum phase transition. We employ the following methods: exact-diagonalization, mean field (Gutzwiller), cluster mean-field, and mean-field plus Gaussian fluctuations. In the first part of the paper we benchmark the four methods by analyzing the equilibrium problem and give numerical estimates for observables such as the density of double occupancies and their correlation function. In the second part, we study parametric ramps from the superfluid to the Mott insulator and map out the crossover from the regime of fast ramps, which is dominated by local physics, to the regime of slow ramps with a characteristic universal power law scaling, which is dominated by long wavelength excitations. We calculate values of several relevant physical observables, characteristic time scales, and an optimal protocol needed for observing universal scaling.Comment: 23 pages, 13 figure

    Emerging Themes from the ESA Symposium Entitled “Pollinator Nutrition: Lessons from Bees at Individual to Landscape Levels”

    Get PDF
    Pollinator populations are declining (Biesmeijer et al., 2006; Brodschneider et al., 2018; Cameron et al., 2011; Goulson, Lye, & Darvill, 2008; Kulhanek et al., 2017; National Research Council, 2007; Oldroyd, 2007), and both anecdotal and experimental evidence suggest that limited access to high quality forage might play a role (Carvell, Meek, Pywell, Goulson, & Nowakowski, 2007; Deepa et al., 2017; Goulson, Nicholls, Botias, & Rotheray, 2015; Potts et al., 2003, 2010; Vanbergen & The Insect Pollinators Initiative, 2013; Vaudo, Tooker, Grozinger, & Patch, 2015; Woodard, 2017). Multiple researchers are earnestly addressing this topic in a diverse array of insect-pollinator systems. As research continues to be published, increased communication among scientists studying the topic of nutrition is essential for improving pollinator health

    Israeli Acute Paralysis Virus: Epidemiology, Pathogenesis and Implications for Honey Bee Health

    Get PDF
    Israeli acute paralysis virus (IAPV) is a widespread RNA virus of honey bees that has been linked with colony losses. Here we describe the transmission, prevalence, and genetic traits of this virus, along with host transcriptional responses to infections. Further, we present RNAi-based strategies for limiting an important mechanism used by IAPV to subvert host defenses. Our study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal and vertical transmission pathways. The phenotypic differences in pathology among different strains of IAPV found globally may be due to high levels of standing genetic variation. Microarray profiles of host responses to IAPV infection revealed that mitochondrial function is the most significantly affected biological process, suggesting that viral infection causes significant disturbance in energy-related host processes. The expression of genes involved in immune pathways in adult bees indicates that IAPV infection triggers active immune responses. The evidence that silencing an IAPV-encoded putative suppressor of RNAi reduces IAPV replication suggests a functional assignment for a particular genomic region of IAPV and closely related viruses from the Family Dicistroviridae, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses simultaneously and reducing colony losses due to viral diseases. We believe that the knowledge and insights gained from this study will provide a new platform for continuing studies of the IAPV–host interactions and have positive implications for disease management that will lead to mitigation of escalating honey bee colony losses worldwide

    Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection

    Get PDF
    The interferon-γ (IFN-γ)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse.Deutscher Akademischer Austausch Dienst (DAAD); International Graduate School in Development Health and Disease (IGS-DHD); Deutsche For-schungsgemeinschaft (SFBs 635, 670, 680); Max-Planck-Gesellschaft (Max Planck Fellowship)
    corecore