265 research outputs found

    Seasonal Changes in Surface Temperatures on Titan

    Get PDF
    The surface brightness temperatures on Titan have been measured by the Composite Infrared Spectrometer (CIRS) aboard Cassini during the period spanning late northern winter through vernal equinox. CIRS observes radiance from the surface through a spectral window at 19 microns where the atmosphere has an opacity minimum [I]. CIRS is now seeing a shift in the latitudinal distribution of temperatures froth a distinctly warmer south to a more symmetrical north -south pattern, similar to that found by Voyager IRIS [2,3] at the time of the previous vernal equinox. Near the equator the temperatures remain close to the 93.7 K value found at the surface by Huygens [4]. From the equator to the poles the temperature gradients are 2-3 K. When compared with predictions froth general circulation models [5] the measured temperatures and their seasonal changes constrain the possible types of surface material. As Cassini continues through Titan's northern spring CiRS will extend its, global coverage to took for correlations between surface temperatures and albedo and to search for diurnal temperature variation

    investigation of particle dynamics and classification mechanism in a spiral jet mill through computational fluid dynamics and discrete element methods

    Get PDF
    Abstract Predicting the outcome of jet-milling based on the knowledge of process parameters and starting material properties is a task still far from being accomplished. Given the technical difficulties in measuring thermodynamics, flow properties and particle statistics directly in the mills, modelling and simulations constitute alternative tools to gain insight in the process physics and many papers have been recently published on the subject. An ideal predictive simulation tool should combine the correct description of non-isothermal, compressible, high Mach number fluid flow, the correct particle-fluid and particle-particle interactions and the correct fracture mechanics of particle upon collisions but it is not currently available. In this paper we present our coupled CFD-DEM simulation results; while comparing them with the recent modelling and experimental works we will review the current understating of the jet-mill physics and particle classification. Subsequently we analyze the missing elements and the bottlenecks currently limiting the simulation technique as well as the possible ways to circumvent them towards a quantitative, predictive simulation of jet-milling

    Seasonal Changes in Titan's Southern Stratosphere

    Get PDF
    In August 2009 Titan passed through northern spring equinox, and the southern hemisphere passed into fall. Since then, the moon's atmosphere has been closely watched for evidence of the expected seasonal reversal of stratospheric circulation, with increased northern insolation leading to upwelling, and consequent downwelling at southern high latitudes. If the southern winter mirrors the northern winter, this circulation will be traced by increases in short-lived gas species advected downwards from the upper atmosphere to the stratosphere. The Cassini spacecraft in orbit around Saturn carries on board the Composite Infrared Spectrometer (CIRS), which has been actively monitoring the trace gas populations through measurement of the intensity of their infrared emission bands (7-1000 micron). In this presentation we will show fresh evidence from recent CIRS measurements in June 2012, that the shortest-lived and least abundant minor species (C3H4, C4H2, C6H6, HC3N) are indeed increasing dramatically southwards of 50S in the lower stratosphere. Intriguingly, the more stable gases (C2H2, HCN, CO2) have yet to show this trend, and continue to exhibit their 'summer' abundances, decreasing towards the south pole. Possible chemical and dynamical explanations of these results will be discussed , along with the potential of future CIRS measurements to monitor and elucidate these seasonal changes

    Plasma Neurofilament Light Chain Predicts Cognitive Progression in Prodromal and Clinical Dementia with Lewy Bodies

    Get PDF
    Plasma neurofilament light chain (NfL) is a marker of neuronal damage in different neurological disorders and might predict disease progression in dementia with Lewy bodies (DLB). The study enrolled 45 controls and 44 DLB patients (including 17 prodromal cases) who underwent an extensive assessment at baseline and at 2 years follow-up. At baseline, plasma NfL levels were higher in both probable DLB and prodromal cases compared to controls. Plasma NfL emerged as the best predictor of cognitive decline compared to age, sex, and baseline severity variables. The study supports the role of plasma NfL as a useful prognostic biomarker from the early stages of DLB

    Seasonal Changes in Titan's Surface Temperatures

    Get PDF
    Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer (CIRS) measured surface radiances at 19 micron in two time periods: one in late northern winter (Ls = 335d eg) and another centered on northern spring equinox (Ls = 0 deg). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between late northern winter and northern spring equinox a shift occurred in the temperature distribution, characterized by a warming of approximately 0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was 93.4 K. We measured a seasonal lag of delta Ls approximately 9 in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65 deg S in the relatively cloud-free zone between the mid-latitude and southern cloud regions

    Water Vapor in Titan's Stratosphere from Cassini/CIRS Far-infrared Spectra

    Get PDF
    Since the first detection of water vapor in Titan's stratosphere by disk-average observations from the Infrared Space Observatory (Coustenis et al. 1998) we report here the successful detection of stratospheric water vapor using the Cassini Composite Infrared Spectrometer (CIRS, Flasar et al. 2004). CIRS senses water emissions in the far infrared spectral region near 50 microns, which we have modeled using two independent radiative transfer codes (NEMESIS, Irwin et al 2008 and ART, Coustenis et al. 2007, 2010). From the analysis of nadir spectra we have derived a mixing ratio of (0.14 0.05) ppb at an altitude of 97 kilometers, which corresponds to an integrated (from 0 to 600 kilometers) surface normalized column abundance of (3.7 plus or minus 1.3) x 10(exp 14) molecules per square centimeter. In the latitude range 80 S to 30 N we see no evidence for latitudinal variations in these abundances within the error bars. Using limb observations, we obtained mixing ratios of (0.13 plus or minus 0.04) ppb at an altitude of 115 kilometers and (0.45 plus or minus 0.15) ppb at an altitude of 230 kilometers, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models (e.g. Lara et al. 1996, Wilson and Atreya 2004, Horst et al. 2008); retrieved scaling factors (from approximately 0.1 to approximately 0.6) to the water profile suggested by these models show that water vapor is present in Titan stratosphere with less abundance than predicted

    Predicting heart failure outcome from cardiac and comorbid conditions: The 3C-HF score

    Get PDF
    Background: Prognostic stratification in heart failure (HF) is crucial to guide clinical management and treatment decision-making. Currently available models to predict HF outcome have multiple limitations. We developed a simple risk stratification model, based on routinely available clinical information including comorbidities, the Cardiac and Comorbid Conditions HF (3C-HF) Score, to predict all-cause 1-year mortality in HF patients. Methods: We recruited in a cohort study 6274 consecutive HF patients at 24 Cardiology and Internal Medicine Units in Europe. 2016 subjects formed the derivation cohort and 4258 the validation cohort.Weentered information on cardiac and comorbid candidate prognostic predictors in amultivariablemodel to predict 1-year outcome

    Evolution of the Far-infrared Cloud at Titan's South Pole

    Get PDF
    A condensate cloud on Titan identified by its 220 cm (sup -1) far-infrared signature continues to undergo seasonal changes at both the north and south poles. In the north the cloud, which extends from 55 North to the pole, has been gradually decreasing in emission intensity since the beginning of the Cassini mission with a half-life of 3.8 years. The cloud in the south did not appear until 2012 but its intensity has increased rapidly, doubling every year. The shape of the cloud at the South Pole is very different from that in the north. Mapping in December 2013 showed that the condensate emission was confined to a ring with a maximum at 80 South. The ring was centered 4 degrees from Titan's pole. The pattern of emission from stratospheric trace gases like nitriles and complex hydrocarbons (mapped in January 2014) was also offset by 4 degrees, but had a central peak at the pole and a secondary maximum in a ring at about 70 South with a minimum at 80 South. The shape of the gas emissions distribution can be explained by abundances that are high at the atmospheric pole and diminish toward the equator, combined with correspondingly increasing temperatures. We discuss possible causes for the condensate ring. The present rapid build up of the condensate cloud at the South Pole is likely to transition to a gradual decline during 2015-16
    corecore