1,398 research outputs found

    Switching the Conductance of a Molecular Junction using a Proton Transfer Reaction

    Full text link
    A novel mechanism for switching a molecular junction based on a proton transfer reaction triggered by an external electrostatic field is proposed. As a specific example to demonstrate the feasibility of the mechanism, the tautomers [2,5-(4-hydroxypyridine)] and {2,5-[4(1H)-pyridone]} are considered. Employing a combination of first-principles electronic structure calculations and Landauer transport theory, we show that both tautomers exhibit very different conductance properties and realize the "on" and "off" states of a molecular switch. Moreover, we provide a proof of principle that both forms can be reversibly converted into each other using an external electrostatic field.Comment: 14 pages, 5 figure

    Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in Single-Molecule Junctions

    Get PDF
    We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasi-degenerate states. Decoherence mechanisms arising from the electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the all-important relevance of vibrations for understanding charge transport through molecular junctions.Comment: 5 pages, 4 figure

    Do fluorescence and transient absorption probe the same intramolecular charge transfer state of 4- ( dimethylamino ) benzonitrile?

    Get PDF
    We present here the results of time-resolved absorption and emission experiments for 4-(dimethylamino)benzonitrile in solution, which suggest that the fluorescent intramolecular charge transfer (ICT) state may differ from the twisted ICT (TICT) state observed in transient [email protected]

    Siting Background Towers to Characterize Incoming Air for Urban Greenhouse Gas Estimation: A Case Study in the Washington, DC/Baltimore Area

    Full text link
    There is increased interest in understanding urban greenhouse gas (GHG) emissions. To accurately estimate city emissions, the influence of extraurban fluxes must first be removed from urban greenhouse gas (GHG) observations. This is especially true for regions, such as the U.S. Northeastern Corridorâ Baltimore/Washington, DC (NECâ B/W), downwind of large fluxes. To help site background towers for the NECâ B/W, we use a coupled Bayesian Information Criteria and geostatistical regression approach to help site four background locations that best explain CO2 variability due to extraurban fluxes modeled at 12 urban towers. The synthetic experiment uses an atmospheric transport and dispersion model coupled with two different flux inventories to create modeled observations and evaluate 15 candidate towers located along the urban domain for February and July 2013. The analysis shows that the average ratios of extraurban inflow to total modeled enhancements at urban towers are 21% to 36% in February and 31% to 43% in July. In July, the incoming air dominates the total variability of synthetic enhancements at the urban towers (R2 = 0.58). Modeled observations from the selected background towers generally capture the variability in the synthetic CO2 enhancements at urban towers (R2 = 0.75, rootâ meanâ square error (RMSE) = 3.64 ppm; R2 = 0.43, RMSE = 4.96 ppm for February and July). However, errors associated with representing background air can be up to 10 ppm for any given observation even with an optimal background tower configuration. More sophisticated methods may be necessary to represent background air to accurately estimate urban GHG emissions.Key PointsFactoring in the variability of greenhouse gas enhancements in incoming air is critical for estimating emissions in an urban domainStatistical methods were used to site four towers sampling background air in the Washington, DC/Baltimore regionOptimal background tower configurations for representing incoming air can still have large errors for any given urban GHG observationPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142902/1/jgrd54353_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142902/2/jgrd54353.pd

    A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy

    Get PDF
    Stimulated emission depletion (STED) microscopy is a prominent approach of super-resolution optical microscopy, which allows cellular imaging with so far unprecedented unlimited spatial resolution. The introduction of time-gated detection in STED microscopy significantly reduces the (instantaneous) intensity required to obtain sub-diffraction spatial resolution. If the time-gating is combined with a STED beam operating in continuous wave (CW), a cheap and low labour demand implementation is obtained, the so called gated CW-STED microscope. However, time-gating also reduces the fluorescence signal which forms the image. Thereby, background sources such as fluorescence emission excited by the STED laser (anti-Stokes fluorescence) can reduce the effective resolution of the system. We propose a straightforward method for subtraction of anti-Stokes background. The method hinges on the uncorrelated nature of the anti-Stokes emission background with respect to the wanted fluorescence signal. The specific importance of the method towards the combination of two-photon-excitation with gated CW-STED microscopy is demonstrated. © 2014 The Authors. J. Biophotonics
    corecore