182 research outputs found

    Impaired Mitochondrial Function and Insulin Resistance of Skeletal Muscle in Mitochondrial Diabetes

    Get PDF
    OBJECTIVE - Impaired muscular mitochondrial function is related to common insulin resistance in type 2 diabetes. Mitochondrial diseases frequently lead to diabetes, which is mostly attributed to defective beta-cell mitochondria and secretion. RESEARCH DESIGN AND METHODS - We assessed muscular mitochondrial function and lipid deposition in liver (hepatocellular lipids [HCLs]) and muscle (intramyocellular lipids [IMCLs]) using P-31/H-1 magnetic resonance spectroscopy and insulin sensitivity and endogenous glucose production (EGP) using hyperinsulinemic-euglycemic clamps combined with isotopic tracer dilution in one female patient suffering from MELAS(myopathy,encephalopathy, lactic acidosis, and stroke-like episodes) syndrome and in six control subjects. RESULTS - The MELAS patient showed impaired insulin sensitivity (4.3 vs. 8.6 +/- 0.5 mg . kg(-1) . min(-1)) and suppression of EGP (69 vs. 94 +/- 1%), and her baseline and insulin-stimulated ATP synthesis were reduced (7.3 and 8.9 vs. 10.6 +/- 1.0 and 12.8 +/- 1.3 mu mol . l(-1) . min(-1)) compared with those of the control subjects. HCLs and IMCLs were comparable between the MELAS patient and control subjects. CONCLUSIONS - Impairment of muscle mitochondrial fitness promotes insulin resistance and could thereby contribute to the development of diabetes in some patients with the MELAS syndrome

    A metabarcoding analysis of the wrackbed microbiome indicates a phylogeographic break along the North Sea–Baltic Sea transition zone

    Get PDF
    Sandy beaches are biogeochemical hotspots that bridge marine and terrestrial ecosystems via the transfer of organic matter, such as seaweed (termed wrack). A keystone of this unique ecosystem is the microbial community, which helps to degrade wrack and re-mineralize nutrients. However, little is known about this community. Here, we characterize the wrackbed microbiome as well as the microbiome of a primary consumer, the seaweed fly Coelopa frigida, and examine how they change along one of the most studied ecological gradients in the world, the transition from the marine North Sea to the brackish Baltic Sea. We found that polysaccharide degraders dominated both microbiomes, but there were still consistent differences between wrackbed and fly samples. Furthermore, we observed a shift in both microbial communities and functionality between the North and Baltic Sea driven by changes in the frequency of different groups of known polysaccharide degraders. We hypothesize that microbes were selected for their abilities to degrade different polysaccharides corresponding to a shift in polysaccharide content in the different seaweed communities. Our results reveal the complexities of both the wrackbed microbial community, with different groups specialized to different roles, and the cascading trophic consequences of shifts in the near shore algal community

    The EUFOREA pocket guide for chronic rhinosinusitis

    Get PDF
    Chronic rhinosinusitis (CRS) is known to affect around 5 % of the total population, with major impact on the quality of life of those severely affected (1). Despite a substantial burden on individuals, society and health economies, CRS often remains underdiagnosed, under-estimated and under-treated (2). International guidelines like the European Position Paper on Rhinosinusitis and Nasal Polyps (EPOS) (3) and the International Consensus statement on Allergy and Rhinology: Rhinosinusitis 2021 (ICAR) (4) offer physicians insight into the recommended treatment options for CRS, with an overview of effective strategies and guidance of diagnosis and care throughout the disease journey of CRS

    Mutations in HNF1A Result in Marked Alterations of Plasma Glycan Profile

    Get PDF
    A recent genome-wide association study identified hepatocyte nuclear factor 1-α (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MODY) would display altered fucosylation of N-linked glycans on plasma proteins and that glycan biomarkers could improve the efficiency of a diagnosis of HNF1A-MODY. In a pilot comparison of 33 subjects with HNF1A-MODY and 41 subjects with type 2 diabetes, 15 of 29 glycan measurements differed between the two groups. The DG9-glycan index, which is the ratio of fucosylated to nonfucosylated triantennary glycans, provided optimum discrimination in the pilot study and was examined further among additional subjects with HNF1A-MODY (n = 188), glucokinase (GCK)-MODY (n = 118), hepatocyte nuclear factor 4-α (HNF4A)-MODY (n = 40), type 1 diabetes (n = 98), type 2 diabetes (n = 167), and nondiabetic controls (n = 98). The DG9-glycan index was markedly lower in HNF1A-MODY than in controls or other diabetes subtypes, offered good discrimination between HNF1A-MODY and both type 1 and type 2 diabetes (C statistic ≥ 0.90), and enabled us to detect three previously undetected HNF1A mutations in patients with diabetes. In conclusion, glycan profiles are altered substantially in HNF1A-MODY, and the DG9-glycan index has potential clinical value as a diagnostic biomarker of HNF1A dysfunction

    European Position Paper on Rhinosinusitis and Nasal Polyps 2020

    Get PDF
    The European Position Paper on Rhinosinusitis and Nasal Polyps 2020 is the update of similar evidence based position papers published in 2005 and 2007 and 2012. The core objective of the EPOS2020 guideline is to provide revised, up-to-date and clear evidence-based recommendations and integrated care pathways in ARS and CRS. EPOS2020 provides an update on the literature published and studies undertaken in the eight years since the EPOS2012 position paper was published and addresses areas not extensively covered in EPOS2012 such as paediatric CRS and sinus surgery. EPOS2020 also involves new stakeholders, including pharmacists and patients, and addresses new target users who have become more involved in the management and treatment of rhinosinusitis since the publication of the last EPOS document, including pharmacists, nurses, specialised care givers and indeed patients themselves, who employ increasing self-management of their condition using over the counter treatments. The document provides suggestions for future research in this area and offers updated guidance for definitions and outcome measurements in research in different settings. EPOS2020 contains chapters on definitions and classification where we have defined a large number of terms and indicated preferred terms. A new classification of CRS into primary and secondary CRS and further division into localized and diffuse disease, based on anatomic distribution is proposed. There are extensive chapters on epidemiology and predisposing factors, inflammatory mechanisms, (differential) diagnosis of facial pain, allergic rhinitis, genetics, cystic fibrosis, aspirin exacerbated respiratory disease, immunodeficiencies, allergic fungal rhinosinusitis and the relationship between upper and lower airways. The chapters on paediatric acute and chronic rhinosinusitis are totally rewritten. All available evidence for the management of acute rhinosinusitis and chronic rhinosinusitis with or without nasal polyps in adults and children is systematically reviewed and integrated care pathways based on the evidence are proposed. Despite considerable increases in the amount of quality publications in recent years, a large number of practical clinical questions remain. It was agreed that the best way to address these was to conduct a Delphi exercise . The results have been integrated into the respective sections. Last but not least, advice for patients and pharmacists and a new list of research needs are included. The full document can be downloaded for free on the website of this journal: http://www.rhinologyjournal.com
    corecore