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ABSTRACT
Model-based development of CPS is based on the capability
of early verification of system properties on a model of the
controls and the controlled physical system, and the capa-
bility of producing automatically an implementation of the
model. Unfortunately, in the development of complex dis-
tributed or highly concurrent systems, the scheduling and
communication delays may significantly affect the behav-
ior of the controls. We present a framework for adding the
model of schedulers, tasks and messages to Simulink models
and to verify by simulation the impact of scheduling and
execution times delays on the performance of the controls.
Our toolset is highly modular and extensible and allows ap-
plication to existing models with limited changes and even
the automatic synthesis of the task and message model from
an external specification.

1. INTRODUCTION
Simulink is a graphical modeling environment implement-

ing a Synchronous-Reactive (SR) Model of Computation
(MoC) for multidomain Model-Based Design (MBD) and
simulation. Continuous-time, discrete-time and discrete-
events systems can be defined in the model, making Simulink
suitable for the design of Cyber-Physical Systems (CPSs),
where the controller (discrete-time) and the plant (continuous-
time) must be modeled and simulated together.

CPSs are often distributed and execute on nodes con-
nected by a wired or wireless networks. The Simulink model
of the controls is purely functional and allows the modeling
and simulation of the control function executing in logical
time, with the assumption that all reactions complete within
the next event. However, in a real system implementation,
control functionality executes in finite time, and messages
are queued waiting for transmission on network(s), giving
rise to latencies and jitter that may change the performance
of the controls.

To represent computation and communication delays in
Simulink, a possible solution is provided by the TrueTime
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framework from the University of Lund [6]. TrueTime in-
tegrates a real-time scheduling and a network simulator in
a Simulink custom block, enabling the co-simulation of the
control functions considering the software (task) and mes-
sage implementation details and the scheduler and resource
management policies. TrueTime supports the Earliest Dead-
line First (EDF) and Fixed Priority (including Rate Mono-
tonic, RM) scheduling policies [5] for single-core systems and
several network standards, including Ethernet, the CAN bus
and FlexRay, but also wireless networks such as 802.11b
WLAN and 802.15.4 ZigBee. Presently, multi-core archi-
tectures are not supported. TrueTime is implemented as a
single custom Simulink block specified as a Matlab or C++

S-Function and implements, in a monolithic fashion, the con-
troller functionality, the task model, and the scheduler.

In this paper, we present a modular framework for the
co-simulation of control functionality and controlled system
dynamics with real-time scheduling policies, communication
mechanisms and real-time controllers. Similar to TrueTime,
it is based on Simulink, allowing the co-simulation of any
discrete-time controller model and continue time plant. How-
ever, our framework provides a modular and extensible ar-
chitecture and allows for three key features that can be con-
sidered its main contributions.

• the addition of a task implementation model and a
scheduler to an existing Simulink model with limited
and localized changes. The proposed modeling struc-
ture clearly separates the controller model (function-
ality) from the model of the task, the scheduler, the
communication mechanisms and the other attributes
of the execution platform.

• the modular integration of a (possibly third-party) real-
time scheduling simulator and network simulator, through
simple and generic interfaces. For completeness and
self-consistency, we provide an adapter to an existing
open source scheduling and resource management sim-
ulation project RTSim [12], and the open source net-
work simulator framework OMNeT++ [21].

• the possibility of the automatic generation of the task,
scheduler, network and message blockset from a (SysML)
specification using model-to-text transformation rules
to generate the blockset using a Matlab script.

Our framework is freely available as open source from
http://retis.sssup.it/tres. The paper is organized as
follows. In section 2, we introduce the model assumptions
and provide a short summary of the Simulink semantics, its
execution model and the interactions between the simulation
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engine and our framework. In section 3, we describe the
structure of the framework, with the custom blockset and
the internal structure of the adapter towards the scheduling
simulator. In section 4 we provide an example that shows a
use case in which different task models and scheduling poli-
cies impact the performance of the controls, as shown by
the simulation results. Finally, in section 5, we provide our
conclusions and a discussion of future work.

1.1 Related Work
A large variety of simulation tools are available from the

industry and the academia. Most of them are geared towards
the use in a specific domain. NS-3 (Network Simulator) [16]
and OMNeT++ [17] are freely available discrete-event com-
puter network simulators. They supports several multime-
dia communication protocols and are extensible for the in-
clusion of new ones. In [15] a simulation environment for
CAN-Ethernet networks is presented as example of exten-
sion to OMNeT++. Simulation of CAN and FlexRay auto-
motive network communications protocols is available from
many commercial tools, including those from Vector [22].

A very large number of projects target the evaluation
of scheduling policies and the analysis of task implementa-
tions (more than 6 million hits when searching the keywords
real time scheduling simulator in Google). A necessarily in-
complete list includes Yartiss [8], Storm [20], ARTISST [9],
Cheddar [19], Schesim [14], Stress [4].

TrueTime [6] is a freeware1 Matlab/Simulink-based simu-
lation tool that has been developed at Lund University since
1999. It provides models of multi-tasking real-time kernels
and networks that can be used in simulation models for net-
worked embedded control systems. TrueTime is used by
many research groups worldwide to study the (simulated)
impact of lateness and deadline misses on controls.

Several research works investigate the consequences of com-
putation (scheduling) and communication delays on con-
trols. An overview on the subject can be found in [3]. Recent
works on this subject include [7]. Also, an analysis of con-
trol activation models based on events rather than periodic
triggers (and the possible improvements with respect to the
CPU resource) are discussed in [2] and [13].

The TrueTime Kernel block simulates a computer node
with a generic real-time kernel, A/D and D/A converters,
external interrupt inputs and network interfaces. The block
is configured via an initialization script (usually written in
Matlab code), where a specific API is used by the designer
to create tasks, timers and interrupt handlers and define the
scheduling policy and the communication resources.

In TrueTime, the model of task code is represented by code
functions that are written in either Matlab or C++ code. A
TrueTime developer has two options: hand-code the control
logics and lose availability of Simulink (control) toolboxes,
or call external discrete-time Simulink models from within
the code functions using a mechanism based on the MAT-
LAB built-in operator sim() with several limitations: signal-
generator blocks that use the simulation time and blocks for
which is not possible to specify the sample rate (e.g., the
Discrete Derivative block) cannot be used. In addition, data
connections among Simulink models need to be implemented
in code using a purposely offered API and the application
of a TrueTime Scheduler to an already existing Simulink
model of controls requires substantially rewriting, mixing

1http://www3.control.lth.se/truetime/LICENSE.txt

the controller functionality, and models of the task set, the
scheduler, and the physical execution platform. Because of
the monolithic architecture and the number of code artifacts
that are needed for system configuration (e.g., initialization
script and code functions), the current TrueTime implemen-
tation is hardly compatible with an automatic model gener-
ation and a M2M transformation flow.

SimEvents [18] is a commercial toolbox developed by The
MathWorks, providing a discrete-event simulation engine
and component library for Simulink. It enables event-driven
communication modeling between Simulink components to
analyze and optimize end-to-end latencies, throughput, packet
loss, and other performance characteristics. The compo-
nent library allows the designer to customize processing de-
lays, prioritization, and other operations to represent sys-
tems that range from manufacturing processes, to hardware
architectures and sensor/communication networks. Because
of its generality, SimEvents has no explicit notion of task,
real-time scheduler, network protocol or hardware compo-
nent. They need to be built as libraries using the elementary
queue and server blocks.

2. BASIC CONCEPTS AND ASSUMPTIONS
Simulink implements a Synchronous-Reactive (SR) model

of computation integrating continuous-, discrete-time and
discrete events (triggered) subsystems and blocks. Continuous-
type blocks process continuous-time signals and produce as
output other continuous signal functions according to the
block description, typically a set of differential equations.
The equations that compute the dynamics of the continu-
ous part are integrated by a solver at fixed or variable time
steps. A variable step solver is invoked at those points in
time that are relevant for the dynamics of the system they
compute (major steps and zero-crossing points).

Discrete-Time Simulink blocks are activated at periodic-
time instants and process input signals, sampled at periodic
instants, producing a set of periodic-output signals and the
state updates. Finally, triggered blocks are only executed
on the occurrence of a given event (a signal transition or a
function call).

A fundamental part of the model executable semantics is
the rules dictating the evaluation order of the blocks. Any
block for which the output is directly dependent on its in-
put (i.e., any block with direct feedthrough) cannot execute
and produce outputs until the blocks driving its inputs ex-
ecute. The set of topological dependencies implied by di-
rect feedthrough blocks defines a partial order. When the
simulation starts, blocks are ordered and a total order of
execution compatible with the partial order of execution is
determined. When a block is triggered (activated), inputs
are sampled and output update and state update functions
computed in sequence to produce the system outputs.

The Simulink engine computes the states and outputs of
the system at time points (steps) from the simulation start
time to the finish time. The length of time between steps is
called step size. Variable step solvers divide the simulation
timespan in major and minor time steps. The solver pro-
duces a result at each major time step. Any point in time
that is relevant for the dynamic of the controlled or the con-
troller system corresponds to a major step. For example,
all the triggering instants of discrete-time (controller) sub-
systems correspond to major steps. A minor time step is a
subdivision of the major time step used to improve the ac-
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curacy in the computation of the system dynamics and find
the point in time when continuous-time system have a zero-
crossing point, that is a point when some of the state vari-
ables cross a zero threshold (a significant change of state).

Simulink System Functions (S-Functions) are a mecha-
nism for extending the set of predefined Simulink blocks.
An S-function is a description of a Simulink block writ-
ten in Matlab, C, C++ or Fortran. Interactions between
the Simulink simulation engine and custom blocks occurs
through a predefined set of API functions.

Figure 1 shows the simulation cycle at runtime with the
major and minor steps and the points in the cycle in which
the simulation engine invokes the API functions specified for
the S-function blocks. Among those, the mdlOutputs is used
to update the outputs of the custom block, the mdlUpdate

to update the internal state of the custom block and mdlZe-

roCrossing to define the signals that determine the zero-
crossing points and possibly force them (set a time instant
for a future major step). The same task can be achieved by
using the mdlGetTimeOfNextVarHit that allows to define a
future time instant for a major step.

mdlGetTimeOfNextVarHit
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Figure 1: Simulation cycle in Simulink.

Real-Time scheduler Simulator.
A Real-Time scheduler simulator is a Discrete Event Sys-

tem (DES) implementing an event handling mechanism (typ-
ically with a queue). It reacts to tasks arrival events and
dispatches the currently active tasks from the ready queue
according to a fixed or dynamic priority-based scheduling al-
gorithm. Tasks arrival events can arrive asynchronously or
periodically and are ordered in the event queue in ascending
order following (i) the event occurrence time (ii) a causal-
ity order for those with equal occurrence time. To preserve
causality, a task is dispatched only when all the events at
the current time have been processed. At any point in time,
the next scheduling event can be the termination of the task
currently in execution, or the arrival event of a task, that
can possibly cause a preemption (if the new task has higher
priority) and a context switch.

In an RT simulator, tasks execute according to a model
of (time-consuming) computations. Our framework assumes
the same model as in TrueTime (which is also suited to the
typical code generation process for Simulink models). The

execution of a task is split in preemptable units called seg-
ments, informally corresponding to the execution of a func-
tion called by the task main code. Each segment is identified
by an execution time (possibly randomly generated accord-
ing to a given distribution) and all segments in a task are
executed in a sequence.

When the RT simulator is integrated with Simulink, seg-
ments map one-to-one to subsystems and the execution or-
der of the segments in a task must match the order of execu-
tion imposed by the model semantics. The time duration of
each task segment, corresponds to the execution time of the
corresponding code function implementing the sub-system
(and possibly generated from it in an automatic code gener-
ation flow). Formally, the execution model is the following
(a strict subset of the Simulink semantics).

• V = {S1, ...., S|V|}, the set of functional sub-systems in
the simulink model. Subsystem blocks can be continu-
ous time (representing the controlled system or plant)
or discrete time controller blocks, describing the con-
troller logic. A functional controller subsystem Si is
characterized by a worst case execution time γi for its
generated execution code on a given platform. We as-
sume a subsystem reads or samples all its inputs when
it starts executing, and generates the outputs when
it completes execution. A subsystem Si may have in-
put and output ports. We assume the designer par-
titions the controller (discrete-time) model into single
rate subsystems and that all input ports carry signals
with a uniform sampling period ti. The result of the
block computation is a set of signals with the same
rate, produced on the output port. The sampling pe-
riod ti of the input signal is also the activation period
of the block.

• E = {l1, ...., l|E|} is the set of links. A link li = (Sh, Sk)
connects an output port of subsystem Sh (source) to
an input port of Sk (sink).

• A precedence relation may exist between a pair of sub-
systems Si and Sj . The notation used is Si ≺ Sj .

On the side of the task model, supported by the RT simu-
lator, we have

• T = {τ1, ..., τ|T |} is the set of tasks. Each task τi has
an activation period Ti or activation event ei and an
optional priority πi (or other scheduling attributes).
Periodic tasks have zero offset, thus they start at the
same time instant t = 0.

• A mapping relation mt(Si, τj , k) is defined between a
controller subsystem Si and a task τj meaning that
the code implementing Si is executed in the context
of task τj with order index k. A mapping relation is
only possible if the execution rate of Si and τj are
the same (the constraint could be relaxed allowing for
integer divisors). If two subsystems are mapped onto
the same task, the mapping order index must match
their partial order of execution. If they are on different
tasks, the execution order must be guaranteed by the
priorities assigned to the tasks.

• tasks are scheduled for execution on a single- or multi-
core platform according to a defined scheduling policy.

The major steps of the Simulink simulation must include
all the periodic activation times of tasks as well as the aperi-
odic events that lead to the activation of other tasks. Every



time a major step occurs, the block implementing the real-
time scheduling simulator is invoked and processes (if there
is any) the task arrival event and any other event that is
active at the same time. The task activation instant cor-
responds to the activation of the first task segment. Next,
the real-time scheduler determines the tasks to be set in ex-
ecution and the execution time for their current segments,
determining the point in time when the current segments are
expected to complete. These times are set as future major
step times in the Simulink simulation using the zero crossing
or next var hit API calls.

The actual start and completion times of the task seg-
ments must correspond to the times in which the correspond-
ing subsystems reads or sample their inputs and produce
their outputs. To guarantee this execution semantics, the
activation of each subsystem must be changed from peri-
odic to function activated (Figure 2), and a latch barrier
must be added on all its outputs. The signals activating the
subsystem (and its input sampling) and the output latch
are generated by the task blocks upon the beginning of the
execution and the completion of the corresponding task seg-
ment. Zero-execution time assumption is replaced by the
finite-execution time assumption, enabling the simulation of
the scheduling mechanisms upon the Simulink model.
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Figure 2: The execution of subsystems modeled through
segments.

Figure 2 shows the activation mechanism of a block (D
in the example). When a task segment starts executing,
the corresponding block is activated. However, the output
value is not instantaneusly available for the other blocks in
the system. The segment execution can be interrupted an
its execution time can take longer than the original segment
lenght since the task can be descheduled to execute higher
priority tasks. To handle this, the output signal u is latched
and enabled as output only when the segment terminates the
execution. The segment completion results in the generation
of the terminate signal that produces the signal update at
the output of the latch.

Network Simulator.
Like a Real-Time scheduler Simulator, a Network Simu-

lator is a DES simulating nodes exchanging messages over
a network infrastructure with a given communication pro-
tocol. The simulator defines the timed events related to
the transmission and arrival of messages by the networked
nodes. The communication (MAC) protocol is the core at-
tribute of the communication network. It defines the set of
rules according to which messages are selected for transmis-
sion on shared physical links and ultimately determines the
latency of messages together with the attributes that define
the network speed and reliability. It is therefore important
that a Network Simulator supports a large set of protocols
and can be easily extended to include new protocols.

Formally, a network can be described with:

• M = {m1, · · · ,m|M|}, a set of messages.

• N = {n1, · · · , n|N|}, a set of networks.

• A mapping relation mm(mi, nj) is defined between
messages and networks, meaning that message mi is
transmitted over the network nj .

• A mapping relation ml(li,mj) is defined between links
and messages, meaning that the data of the signal ex-
changed over li are mapped onto message mj . Each
link li can be mapped onto at most one message. many-
to-one mappings are allowed (signal multiplexing). If li
is not mapped to any message, then its implementation
consists of local communication (typically a shared
variable).

The synchronization between the Network Simulator and
Simulink, is orchestrated by our Simulink Network custom
block.

The major steps of the Simulink simulation must include
all the periodic activation times of messages, as well as
the aperiodic events that lead to aperiodic transmissions of
messages. Every major step, the Network block is invoked
and processes the possible message transmission and arrival
events and determines when the currently sent messages are
expected to be received. These time instants are set as fu-
ture major steps in the Simulink simulation.

When a signal is sent by a message over a network, the
signal is sampled and the message is assembled and put into
a ready queue of messages ready to be sent. When it reaches
the receiver, the message is disassembled and its signal val-
ues are available to be read. The time required to deliver
the message depend on the underlying protocol and the net-
work traffic. To guarantee this execution semantics, each
networked link is replaced with a double latch barrier as
highlighted in bottom of Figure 3. The Zero-communication
delay assumption is replaced by the finite-communication
delay enabling the simulation of the network exchange mech-
anism over the network.
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Figure 3: The transmisison of information signals packed
into messages under the control of the network block.

When a message is sent, the send barrier is activated and
the corresponding link sampled. The signal is not instan-
taneously propagated to the receiver block but gated by a
second latch that blocks the signal until the message is ac-
tually delivered to the receiver node. When the message is
delivered, the arrival barrier is activated, and the signal is
made available to the other blocks in the system.

3. ARCHITECTURE



3.1 Execution Model
Our framework adds the capability of simulating real-time

task execution of Simulink models on single- and multi-core
platforms through the two custom blocks Kernel and Task

and the capability of simulating the communication delay
on Simulink signals (links) when they are implemented as
messages exchanged over a network through the two cus-
tom blocks Network and Message, implemented as C++ S-
Functions. The block Kernel models an event-based real-
time kernel and the scheduler inside it, simulating the exe-
cution of tasks and interrupt handlers on a single- or multi-
core computer node according to a given scheduling policy.
Each task (or handler) executed by the Kernel is modeled
with one instance of the block Task. Task execution consists
of the serialized execution of the functions implementing the
subsystems. These functions are segments associated with
an execution time. The block Network models an event-
driven network in which messages are exchanged between
nodes (Simulink subsystems) according to a network proto-
col. The messages exchanged over the network are modeled
with the block Message.

3.1.1 Real-Time Scheduler
Figure 4 shows the structure of the blocks Kernel and

Task and the interactions among them. Figure 2 and the
example in Figure 6 show how a block Task controls the
activation and termination events of the subsystems that
are executed by it.

Figure 4: Kernel and Task blocks.

Each block Task is a triggered subsystem, executed on
the occurrence of a function call event received on its port
function(). Its output interface consists of two ports: ac-

tiv and next_instr_duration. The first one is an array of
function call events with size equal to twice the number of
subsystems managed by the task. This port is used to issues
activation and termination events to each Simulink subsys-
tem implementing one of the segments. The second port
outputs a scalar signal representing the duration of the next
segment executed by the task. Each time Task is triggered,
it (i) issues the termination signal for the previously exe-
cuted segment (if any), (ii) outputs the activation signal for
the current segment, (iii) updates its internal data structure
to point to the next segment and (iv) transmits the execu-
tion time of the new segment to the block Kernel. Whenever
there is no other segment to be executed, Task sends a task
completion signal on the port next_instr_duration. At the
next activation, it issues the termination signal for the last
segment, sets its internal pointer to the current segment to
the first segment and sends back to the Kernel block the
segment duration.

The duration of segments executed by Task is set through
the block mask dialog. The dialog box has one field for speci-
fying the name of a Matlab workspace variable. The variable
is a cell array of strings (pseudo-instructions) that conform

to a specific syntax. Each string describes the computation
time (i.e., the duration) of a segment, which can be fixed or
random. Supported probability distributions that describe
random computation times include the uniform distribution
between a minimum and a maximum value, the exponential
and the Dirac delta distributions (an example is shown in
the following code section).

task_code = {’fixed (7)’; ’delay(unif (3,8))’};

The block Kernel has two input ports: duration and
trigger. On the duration port receives an array of val-
ues, one for each Task block, with the indication of the du-
ration of the next segment to be executed. On the second
port, it receives the array of activations signals of aperiodic
tasks (from external sources). The block has one output
port, named activ, which is used to signal to each task the
execution of the current segment.

The block Kernel uses a zero-crossing function to require
future activations (from the Simulink engine) in correspon-
dence of scheduled events but it is also activated synchronously
with the arrival of aperiodic tasks.

The block Kernel is responsible for keeping the schedul-
ing simulation aligned with the system simulation. At each
activation, it checks for any aperiodic requests. If there is
any, it activates the corresponding aperiodic tasks in the
RT scheduler simulator. Next, it advances the RT scheduler
simulator by looking for the next event in the simulator’s
event queue. Two types of events are relevant for the simu-
lation: the segment completion and task completion. In case
an event of the first type occurs, Kernel reads the input sig-
nal on the port duration at the index corresponding to the
task that completed the segment, and dynamically creates
a new instruction and insert it in the corresponding task.
Finally, once it detects which task has generated the event,
it sends an activation signal to the activ port to trigger the
corresponding Task. If the event task completion is detected,
Kernel simply reset the internal state of the corresponding
task clearing the past history of the executed segments.

A number of parameters configure the (simulated) kernel
and are set through the Kernel mask dialog. Three schedul-
ing policies, namely Deadline Monotonic (DM), Fixed-Priority
(FP) and Earliest Deadline First (EDF), are readily se-
lectable from a context menu. Optionally, the designer can
provide the type and the configuration parameters (if any) of
other scheduling policies, provided that they are supported
by the underlying RT scheduling engine. The designer can
specify the number of cores on which the task execution is
simulated. The current implementation of Kernel with RT-
Sim, supports multi-core architectures with global schedul-
ing policies. The mask dialog has one edit field for specifying
the name of the Matlab variable (cell array) that describes
the type and the timing properties of the (heterogeneous)
task set (an example in the following code section).

task_set = {’PeriodicTask ’, 0.004, 0.004, 0;
...

’PeriodicTask ’, 0.006, 0.006, 0};

Tasks can be periodic or aperiodic and timing properties in-
clude interarrival time, relative deadline and initial offset.
Optionally, task priorities (for tasks scheduled according to
FP) and core affinities can be specified for each task. Fi-
nally, in case several external RT simulators are supported,
a context menu enables the designer to select the one that
is used to perform the simulation.



3.1.2 Network
Figure 3 (top) shows the structure of the Network and

Message blocks. Message blocks are driven by Network block
with a dataflow port state. Block Network communicate to
each Message the actual state of the simulated message over
the network. The state can assume two possible values: send
or receive. The block Message uses the function call output
port activ to trigger the function triggered barriers shown
in Figure 3 (bottom) depending on the send or receive state
received from the Network on the state port.

When a message must be sent over the network, the Net-

work block sends the send state to the appropriate Message

block. Then, the Message block triggers the send barrier
as shown in Figure 3. Once the message is delivered, the
Network block will change the state signal (related to the
delivered message) to receive and the Message block will
trigger the arrival barrier as shown in Figure 3.

3.2 The RT Simulator API Layer
The blocks Kernel and Network rely on external engines

to perform the processor scheduling and Network simula-
tion. Their implementations are not tied to a specific tool
or framework, and are designed according to the basic prin-
ciples of object-oriented programming to provide an easy in-
tegration with external scheduling and network simulators.

The design of the RT Simulator API layer is based on the
observation that every RT simulation framework basically
consists of two high level components: an event handling
system and, on top of it, the actual scheduling simulator.
The first one defines a set of objects that provide a represen-
tation of events and event queues, and provides an API that
enables the creation and deletion of events and their inser-
tion in and extraction from the event queue. The second one
uses the definitions of event (typically after specialization)
and event queue and realizes the actual real-time scheduling
simulation functionality. It implements the concepts of task
(e.g., periodic, aperiodic), scheduling policy (e.g, DM, FP,
EDF), and kernel (e.g., single- or multi-core, with a sched-
uler and a resource manager). The RT Simulator API layer
abstracts these concepts and enables the development of the
Kernel S-Function so that it depends upon a set of inter-
faces classes, rather than upon their concrete implementa-
tions (i.e., a specific RT simulation framework).

The RT Simulator API layer defines three virtual classes
that are used by the Kernel S-Function, namely Kernel,
SimTask and Event. These define a narrow interface for
the kernel, task and event data structures offered by the
external RT simulator. The object adapter pattern [11] is
used to bind the abstract interfaces, used by the S-Function
(client), with the third-party software represented by the
RT simulator. Each class defines a set of operations as pure
virtual functions.

The following is the set of virtual methods to be special-
ized by the refinement of the Kernel class realizing the adap-
tation to the real-time scheduling simulator. Another set of
virtual methods is defined for the adapter classes for tasks
and events (not shown because of space constraints).

// List of virtual methods to be specialized
// for the adaptation to the Real -Time
// scheduling simulator
virtual void initializeSimulation(const double ,

const double* const*) = 0;
virtual void processNextEvent () = 0;
virtual yaks::Event* getNextEvent () = 0;

virtual int getTimeOfNextEvent () = 0;
virtual int getNextWakeUpTime () = 0;
virtual void getRunningTasks () = 0;
virtual void activAperiodicTask(const int) = 0;

Their implementation is demanded to the object adapter,
which calls adaptee operations to actually carry out the re-
quests. Figure 5 shows the interaction of the custom Kernel

block with the simulation loop.
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Figure 5: The system co-simulation of the plant and func-
tional controls with the task and network scheduling parts.

A Network Simulator framework is also based upon an
event handling mechanism (discrete event simulator) with,
on top of it, a message handling mechanism (send/receive)
exchanging messages in an OSI conceptual model [1]. The
Network API layer defines three virtual classes that are
used by the Network S-Function: Network, SimMessage and
Event. The object adapter pattern is still used to bind the
abstract interface with the third-party Network simulator.

// List of virtual methods to be specialized
// for the adaptation to the Network simulator
virtual void processNextEvent () = 0;
virtual yaks::Event* getNextEvent () = 0;
virtual int getTimeOfNextEvent () = 0;
virtual int getNextWakeUpTime () = 0;

Similar to the processor scheduler, our framework includes
the adapter towards one existing network simulator. In this
case, we realized and tested the connection towards the very
popular OMNet++ package, thereby showing the proposed
extensibility and adaptation. A CAN protocol implemented
on top of OMNet++ [15] has been used as the first example
of an embedded communication protocol.

In order to create an instance of a class without making
the S-Function (both Kernel and Network) depend upon the
concrete class, the factory method pattern [11] is used. Each
adapter defines a method called createInstance(), which
takes a std::vector of std::string objects as input argu-
ment. The std::string objects describe a specific config-
uration for the adapter to be instantiated and are provided
by the user through the S-Function mask. For example, a
specific configuration for a Kernel may define the schedul-
ing policy, the task set, the number of cores, etc. Adding
adapters for new external RT scheduling simulators is easy
and just requires to register the factory method of the new
adapter class to a generic factory class. It does not require
any modification to the code of the factory.

4. EXAMPLE
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Figure 6: The three servos example adapted from [6].

A case study showing a possible implementation of three
servo PID controls, adapted from the TrueTime example
library is used to illustrate the capability and the output
of the framework. The example consists of three DC ser-
vos with their continuous-time dynamics (the plant) mod-
eled by a continuous time system and controlled by three
(discrete-time) PID controllers with the same coefficients
(same functional behavior). The three controller subsystems
are mapped for execution on three tasks (τ0, τ1, τ2 each run-
ning one segment). The task periods are T0 = 4, T1 = 5
and T2 = 6 milliseconds respectively. The example is shown
in Figure 6 with the appropriate Kernel and Task blocks.
Tasks specification are supplied as workspace variables. The
PID controllers (contrary to the TrueTime example) are im-
plemented as Simulink subsystems. Each subsystem is exe-
cuted in a segment with an execution time of 2ms, giving a
total CPU load higher than 100% (an overload condition).
The behavior and the implementation assumptions are the
same as in the TrueTime example.
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(a) Rate Monotonic
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(b) Earliest Deadline First

Figure 7: The motor output positions for the three servos
using RM and EDF.

In addition, the position of the motors is read by sensors
and sent to the PID using a periodic CAN message m1.
Another periodic CAN message m2 collects all the command
signals from the controls and forwards them to the motors.
The period of the two messages is 4 ms , m1 (the message
with the sensor data) has higher priority. The CAN message
blocks are shown at the top of Figure 6, right below the task
blocks and their simulated transmission is controlled by the
Network block (same line, on the left of the figure).

We simulated the example on several runs, with and with-
out networking (and the associated sampling and transmis-
sion delays) and using different scheduling policies, such as



the Rate Monotonic (RM, static priority assignment) and
Earliest Deadline First (EDF, dynamic priority) policies.
The results are shown in Figure 7. The top three graphs
show the output of the motors for the three PID controllers
when the corresponding task implementations are scheduled
using RM. Task priorities are assigned in order to the three
tasks, π0 = 1, π1 = 2, π2 = 3. The reference signal for the
motors is a square wave. As a reference, the output of the
controls when the computation and communication delays
are not considered (zero logical time execution: a normal
Simulink run executing without our framework blocks) is
shown as a thick light line. The output of the model with
the computation delays only (no networking) is a thick black
line and the output when also the message delays are con-
sidered is shown as a dashed line.

The top graph in the figure shows how the lowest prior-
ity task (τ2) is losing too many deadlines and the control
is not stable when considering the scheduling delays alone
(of course, the same is true when communication delays are
considered). The use of an EDF scheduling policy with the
abortion of tasks trespassing the deadline results in a com-
pletely different set of results, as shown on the bottom three
graphs of Figure 7. None of the outputs is unstable and, de-
spite some performance degradation (this time the schedul-
ing delay tends to be spread among the three tasks) the
motion of the motors is controlled.

5. CONCLUSIONS AND FUTURE WORK
The framework for scheduling simulation in Simulink is

part of a larger project aimed at system-level modeling, tim-
ing analysis and automatic generation of an implementation
for real-time distributed systems [10]. The overall project
consists of a merger of MBD and MDE methodologies. The
functional model of the physical controlled system and the
controller functions is created in Simulink and validated by
simulation. Next, a functional abstraction is imported in
Papyrus (SysML). The distributed execution architecture,
including CPUs, networks, devices, operating systems, re-
source managers and protocol stacks, is then modeled in
SysML and the functional model is mapped onto the exe-
cution architecture creatng a model of the software (includ-
ing task) and message implementation. After mapping, the
worst case execution times of functions (implementing sub-
systems) and tasks are estimated, and the implementation
model is then validated against timing constraints and by
verifying that the latencies and jitter added by the schedul-
ing and communication delays do not exceedingly deterio-
rate the performance of the controls.
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