57 research outputs found
Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents
The following paper examines a time-efficient method for detecting biological warfare agents (BWAs). The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13), and the rabbit immunoglobulin (Rabbit IgG) has been detected using the polyclonal antibody goat anti-rabbit (GAR). Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved.This work was supported by the Spanish Science and Innovation Ministry under the project
TEC2010-21357-C05-04, and a postdoctoral fellowship at the National Autonomous University
of Mexico.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)Peer reviewe
A kinesin-based approach for inducing chromosome-specific mis-segregation in human cells
Various cancer types exhibit characteristic and recurrent aneuploidy patterns. The origins of these cancer type-specific karyotypes are still unknown, partly because introducing or eliminating specific chromosomes in human cells still poses a challenge. Here, we describe a novel strategy to induce mis-segregation of specific chromosomes in different human cell types. We employed Tet repressor or nuclease-dead Cas9 to link a microtubule minus-end-directed kinesin (Kinesin14VIb) from Physcomitrella patens to integrated Tet operon repeats and chromosome-specific endogenous repeats, respectively. By live- and fixed-cell imaging, we observed poleward movement of the targeted loci during (pro)metaphase. Kinesin14VIb-mediated pulling forces on the targeted chromosome were counteracted by forces from kinetochore-attached microtubules. This tug-of-war resulted in chromosome-specific segregation errors during anaphase and revealed that spindle forces can heavily stretch chromosomal arms. By single-cell whole-genome sequencing, we established that kinesin-induced targeted mis-segregations predominantly result in chromosomal arm aneuploidies after a single cell division. Our kinesin-based strategy opens the possibility to investigate the immediate cellular responses to specific aneuploidies in different cell types; an important step toward understanding how tissue-specific aneuploidy patterns evolve.</p
Estimated IR and phosphorescence emission fluxes for specific Polycyclic Aromatic Hydrocarbons in the Red Rectangle
Following the tentative identification of the blue luminescence in the Red
Rectangle by Vijh et al. (2005), we compute absolute fluxes for the vibrational
IR emission and phosphorescence bands of three small polycyclic aromatic
hydrocarbons. The calculated IR spectra are compared with available ISO
observations. A subset of the emission bands are predicted to be observable
using presently available facilities, and can be used for an immediate,
independent, discriminating test on their alleged presence in this well-known
astronomical object.Comment: accepted for publication on A&
Recent Experimental Tests of Special Relativity
We review our recent Michelson-Morley (MM) and Kennedy-Thorndike (KT)
experiment, which tests Lorentz invariance in the photon sector, and report
first results of our ongoing atomic clock test of Lorentz invariance in the
matter sector. The MM-KT experiment compares a cryogenic microwave resonator to
a hydrogen maser, and has set the most stringent limit on a number of
parameters in alternative theories to special relativity. We also report first
results of a test of Lorentz invariance in the SME (Standard Model Extension)
matter sector, using Zeeman transitions in a laser cooled Cs atomic fountain
clock. We describe the experiment together with the theoretical model and
analysis. Recent experimental results are presented and we give a first
estimate of components of the parameters of the SME matter
sector. A full analysis of systematic effects is still in progress, and will be
the subject of a future publication together with our final results. If
confirmed, the present limits would correspond to first ever measurements of
some components, and improvements by 11 and 14 orders of
magnitude on others.Comment: 29 pages. Contribution to Springer Lecture Notes, "Special Relativity
- Will it survive the next 100 years ?", Proceedings, Potsdam, 200
A kinesin-based approach for inducing chromosome-specific mis-segregation in human cells
Various cancer types exhibit characteristic and recurrent aneuploidy patterns. The origins of these cancer type-specific karyotypes are still unknown, partly because introducing or eliminating specific chromosomes in human cells still poses a challenge. Here, we describe a novel strategy to induce mis-segregation of specific chromosomes in different human cell types. We employed Tet repressor or nuclease-dead Cas9 to link a microtubule minus-end-directed kinesin (Kinesin14VIb) from Physcomitrella patens to integrated Tet operon repeats and chromosome-specific endogenous repeats, respectively. By live- and fixed-cell imaging, we observed poleward movement of the targeted loci during (pro)metaphase. Kinesin14VIb-mediated pulling forces on the targeted chromosome were counteracted by forces from kinetochore-attached microtubules. This tug-of-war resulted in chromosome-specific segregation errors during anaphase and revealed that spindle forces can heavily stretch chromosomal arms. By single-cell whole-genome sequencing, we established that kinesin-induced targeted mis-segregations predominantly result in chromosomal arm aneuploidies after a single cell division. Our kinesin-based strategy opens the possibility to investigate the immediate cellular responses to specific aneuploidies in different cell types; an important step toward understanding how tissue-specific aneuploidy patterns evolve
A kinesin-based approach for inducing chromosome-specific mis-segregation in human cells
Various cancer types exhibit characteristic and recurrent aneuploidy patterns. The origins of these cancer type-specific karyotypes are still unknown, partly because introducing or eliminating specific chromosomes in human cells still poses a challenge. Here, we describe a novel strategy to induce mis-segregation of specific chromosomes in different human cell types. We employed Tet repressor or nuclease-dead Cas9 to link a microtubule minus-end-directed kinesin (Kinesin14VIb) from Physcomitrella patens to integrated Tet operon repeats and chromosome-specific endogenous repeats, respectively. By live- and fixed-cell imaging, we observed poleward movement of the targeted loci during (pro)metaphase. Kinesin14VIb-mediated pulling forces on the targeted chromosome were counteracted by forces from kinetochore-attached microtubules. This tug-of-war resulted in chromosome-specific segregation errors during anaphase and revealed that spindle forces can heavily stretch chromosomal arms. By single-cell whole-genome sequencing, we established that kinesin-induced targeted mis-segregations predominantly result in chromosomal arm aneuploidies after a single cell division. Our kinesin-based strategy opens the possibility to investigate the immediate cellular responses to specific aneuploidies in different cell types; an important step toward understanding how tissue-specific aneuploidy patterns evolve
Costo-efectividad de la vacunación universal antineumocócica en Uruguay
Objetivo. Evaluar la relación costo-efectividad del programa de vacunación universal con
la vacuna antineumocócica conjugada heptavalente (VCN7) en niños menores de 5 años en
Uruguay.
Métodos. Se desarrolló un modelo Markov simulando una cohorte de 48 000 niños nacidos
en 2007 y su evolución hasta los 76 años de edad. El caso base usó un esquema de tres dosis con
una duración estimada de protección de cinco años. La presunción de eficacia y efectividad de la
vacuna se realizó acorde con estudios realizados en Estados Unidos con ajuste a la prevalenciaincidencia
de serotipos en Uruguay. Los resultados se expresaron como costo incremental por
año de vida ganado (AVG) y por año de vida [ganado] ajustado por calidad (AVAC).
Resultados. Para el caso base, el costo incremental fue de US 4 655,8
por AVAC, previniéndose 8 muertes y 4 882 casos de otitis, 56 bacteriemias-sepsis, 429 neumonÃas
y 7 meningitis. El modelo muestra sensibilidad a variaciones en eficacia, costo de la vacuna
y tasa de mortalidad por neumonÃa.
Conclusiones. El programa de vacunación universal con VCN7 en Uruguay es altamente
costo-efectivo y, en consecuencia, recomendable para otros paÃses con carga de enfermedad neumocócica
y cobertura de serotipos similares a Uruguay
- …