1,695 research outputs found
Anisotropy in Homogeneous Rotating Turbulence
The effective stress tensor of a homogeneous turbulent rotating fluid is
anisotropic. This leads us to consider the most general axisymmetric four-rank
``viscosity tensor'' for a Newtonian fluid and the new terms in the turbulent
effective force on large scales that arise from it, in addition to the
microscopic viscous force. Some of these terms involve couplings to vorticity
and others are angular momentum non conserving (in the rotating frame).
Furthermore, we explore the constraints on the response function and the
two-point velocity correlation due to axisymmetry. Finally, we compare our
viscosity tensor with other four-rank tensors defined in current approaches to
non-rotating anisotropic turbulence.Comment: 14 pages, RevTe
Turbulent diffusion in rapidly rotating flows with and without stable stratification
In this work, three different approaches are used for evaluating some Lagrangian properties of homogeneous turbulence containing anisotropy due to the application of a stable stratification and a solid-body rotation. The two external frequencies are the magnitude of the system vorticity, chosen vertical here, and the Brunt–Väisälä frequency, which gives the strength of the vertical stratification. Analytical results are derived using linear theory for the Eulerian velocity correlations (single-point, two-time) in the vertical and the horizontal directions, and Lagrangian ones are assumed to be equivalent, in agreement with an additional Corrsin assumption used by Kaneda (2000). They are compared with results from the kinematic simulation model (KS) by Nicolleau & Vassilicos (2000), which also incorporates the wave–vortex dynamics inherited from linear theory, and directly yields Lagrangian correlations as well as Eulerian ones.
Finally, results from direct numerical simulations (DNS) are obtained and compared We address the question of the validity of Corrsin's simplified hypothesis, which states the equivalence between Eulerian and Lagrangian correlations. Vertical correlations are found to follow this postulate, but not the horizontal ones. Consequences for the vertical and horizontal one-particle dispersion are examined. In the analytical model, the squared excursion lengths are calculated by time integrating the Lagrangian (equal to the Eulerian) two-time correlations, according to Taylor's procedure. These quantities are directly computed from fluctuating trajectories by both KS and DNS. In the case of pure rotation, the analytical procedure allows us to relate Brownian asymptotic laws of dispersion in both the horizontal and vertical directions to the angular phase-mixing properties of the inertial waves. If stratification is present, the inertia–gravity wave dynamics, which affects the vertical motion, yields a suppressed vertical diffusivity, but not a suppressed horizontal diffusivity, since part of the horizontal velocity field escapes wavy motion
A scaling theory of 3D spinodal turbulence
A new scaling theory for spinodal decomposition in the inertial hydrodynamic
regime is presented. The scaling involves three relevant length scales, the
domain size, the Taylor microscale and the Kolmogorov dissipation scale. This
allows for the presence of an inertial "energy cascade", familiar from theories
of turbulence, and improves on earlier scaling treatments based on a single
length: these, it is shown, cannot be reconciled with energy conservation. The
new theory reconciles the t^{2/3} scaling of the domain size, predicted by
simple scaling, with the physical expectation of a saturating Reynolds number
at late times.Comment: 5 pages, no figures, revised version submitted to Phys Rev E Rapp
Comm. Minor changes and clarification
Signatures of two-dimensionalisation of 3D turbulence in presence of rotation
A reason has been given for the inverse energy cascade in the
two-dimensionalised rapidly rotating 3D incompressible turbulence. For such
system, literature shows a possibility of the exponent of wavenumber in the
energy spectrum's relation to lie between -2 and -3. We argue the existence of
a more strict range of -2 to -7/3 for the exponent in the case of rapidly
rotating turbulence which is in accordance with the recent experiments. Also, a
rigorous derivation for the two point third order structure function has been
provided helping one to argue that even with slow rotation one gets, though
dominated, a spectrum with the exponent -2.87, thereby hinting at the
initiation of the two-dimensionalisation effect with rotation.Comment: An extended and typos-corrected version of the earlier submissio
Producing 'Human Elements Based Medical Technologies' in Biotech Companies: Some Ethical and Organisational Ingredients for Innovative Cooking
This article is based on the findings of an EU-funded qualitative research project, entitled 'From GMP to GBP: Fostering good bioethics practices [GBP] among the European biotechnology industry', which seeks to improve the understanding of bioethical issues through the observation of the daily practices in European biotechnology companies and proposes a methodology approaching ethical issues. The comparative study was carried out in biotech companies in France, Italy, Sweden, Hungary and Belgium which develop a wide range of new technologies, all of them involving human materials or where human subjects participate (in clinical trials). Based on our findings in these local settings, we suggest that the notion of bioethics and the way its production is theorised need to be re-conceptualised. We argue that material practices and moral statements are intermingled in inextricable ways that render the formation of bioethical concerns fully dependent on the organisational landscape in which it is embedded. More precisely, the here presented co-production model of moral statements and organisational practices presents a set of common factors that influence how bioethical discourses are shaped, despite the heterogeneity of their epistemic cultures. For example, the procedural design of cell-based-products, the modes of collecting and storing biological specimen, the relationship between patients and companies and technological transfers to emerging countries are defining components that contribute to the shaping process of bioethical concerns. Thus, the path dependency of bioethical concerns relies on an already existing, specific infrastructure and existing relationships within and outside a company rather than on external judgement subsequently applied to its objects, or a collection of processes of reasoning coming from external institutions
Scaling and energy transfer in rotating turbulence
The inertial-range properties of quasi-stationary hydrodynamic turbulence
under solid-body rotation are studied via high-resolution direct numerical
simulations. For strong rotation the nonlinear energy cascade exhibits
depletion and a pronounced anisotropy with the energy flux proceeding mainly
perpendicularly to the rotation axis. This corresponds to a transition towards
a quasi-two-dimensional flow similar to a linear Taylor-Proudman state. In
contrast to the energy spectrum along the rotation axis which does not scale
self-similarly, the perpendicular spectrum displays an inertial range with
-behavior. A new phenomenology gives a rationale for the
observations. The scaling exponents of structure functions up to
order measured perpendicular to the rotation axis indicate reduced
intermittency with increasing rotation rate. The proposed phenomenology is
consistent with the inferred asymptotic non-intermittent behavior
.Comment: to be published in Europhysics Letters (www.epletters.net), minor
changes to match version in prin
The decay of Batchelor and Saffman rotating turbulence
The decay rate of isotropic and homogeneous turbulence is known to be
affected by the large-scale spectrum of the initial perturbations, associated
with at least two cannonical self-preserving solutions of the von
K\'arm\'an-Howarth equation: the so-called Batchelor and Saffman spectra. The
effect of long-range correlations in the decay of anisotropic flows is less
clear, and recently it has been proposed that the decay rate of rotating
turbulence may be independent of the large-scale spectrum of the initial
perturbations. We analyze numerical simulations of freely decaying rotating
turbulence with initial energy spectra (Batchelor turbulence) and
(Saffman turbulence) and show that, while a self-similar decay
cannot be identified for the total energy, the decay is indeed affected by
long-range correlations. The decay of two-dimensional and three-dimensional
modes follows distinct power laws in each case, which are consistent with
predictions derived from the anisotropic von K\'arm\'an-Howarth equation, and
with conservation of anisotropic integral quantities by the flow evolution
On two-dimensionalization of three-dimensional turbulence in shell models
Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model,
the signatures of so-called two-dimensionalization effect of three-dimensional
incompressible, homogeneous, isotropic fully developed unforced turbulence have
been studied and reproduced. Within the framework of shell models we have
obtained the following results: (i) progressive steepening of the energy
spectrum with increased strength of the rotation, and, (ii) depletion in the
energy flux of the forward forward cascade, sometimes leading to an inverse
cascade. The presence of extended self-similarity and self-similar PDFs for
longitudinal velocity differences are also presented for the rotating 3D
turbulence case
Vortical and Wave Modes in 3D Rotating Stratified Flows: Random Large Scale Forcing
Utilizing an eigenfunction decomposition, we study the growth and spectra of
energy in the vortical and wave modes of a 3D rotating stratified fluid as a
function of . Working in regimes characterized by moderate
Burger numbers, i.e. or , our results
indicate profound change in the character of vortical and wave mode
interactions with respect to . As with the reference state of
, for the wave mode energy saturates quite quickly
and the ensuing forward cascade continues to act as an efficient means of
dissipating ageostrophic energy. Further, these saturated spectra steepen as
decreases: we see a shift from to scaling for
(where and are the forcing and dissipation scales,
respectively). On the other hand, when the wave mode energy
never saturates and comes to dominate the total energy in the system. In fact,
in a sense the wave modes behave in an asymmetric manner about .
With regard to the vortical modes, for , the signatures of 3D
quasigeostrophy are clearly evident. Specifically, we see a scaling
for and, in accord with an inverse transfer of energy, the
vortical mode energy never saturates but rather increases for all . In
contrast, for and increasing, the vortical modes contain a
progressively smaller fraction of the total energy indicating that the 3D
quasigeostrophic subsystem plays an energetically smaller role in the overall
dynamics.Comment: 18 pages, 6 figs. (abbreviated abstract
AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease.
The adenosine monophosphate activated kinase protein (AMPK) is an evolutionary-conserved protein important for cell survival and organismal longevity through the modulation of energy homeostasis. Several studies suggested that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. However, in Huntington's disease (HD), AMPK may be activated in the striatum of HD mice at a late, post-symptomatic phase of the disease, and high-dose regiments of the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide may worsen neuropathological and behavioural phenotypes. Here, we revisited the role of AMPK in HD using models that recapitulate the early features of the disease, including Caenorhabditis elegans neuron dysfunction before cell death and mouse striatal cell vulnerability. Genetic and pharmacological manipulation of aak-2/AMPKα shows that AMPK activation protects C. elegans neurons from the dysfunction induced by human exon-1 huntingtin (Htt) expression, in a daf-16/forkhead box O-dependent manner. Similarly, AMPK activation using genetic manipulation and low-dose metformin treatment protects mouse striatal cells expressing full-length mutant Htt (mHtt), counteracting their vulnerability to stress, with reduction of soluble mHtt levels by metformin and compensation of cytotoxicity by AMPKα1. Furthermore, AMPK protection is active in the mouse brain as delivery of gain-of-function AMPK-γ1 to mouse striata slows down the neurodegenerative effects of mHtt. Collectively, these data highlight the importance of considering the dynamic of HD for assessing the therapeutic potential of stress-response targets in the disease. We postulate that AMPK activation is a compensatory response and valid approach for protecting dysfunctional and vulnerable neurons in HD
- …
