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Decay of Batchelor and Saffman rotating turbulence
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The decay rate of isotropic and homogeneous turbulence is known to be affected by the large-scale spectrum
of the initial perturbations, associated with at least two canonical self-preserving solutions of the von Kármán–
Howarth equation: the so-called Batchelor and Saffman spectra. The effect of long-range correlations in the decay
of anisotropic flows is less clear, and recently it has been proposed that the decay rate of rotating turbulence
may be independent of the large-scale spectrum of the initial perturbations. We analyze numerical simulations
of freely decaying rotating turbulence with initial energy spectra ∼k4 (Batchelor turbulence) and ∼k2 (Saffman
turbulence) and show that, while a self-similar decay can not be identified for the total energy, the decay is indeed
affected by long-range correlations. The decay of two- and three-dimensional modes follows distinct power laws
in each case, which are consistent with predictions derived from the anisotropic von Kármán–Howarth equation,
and with conservation of anisotropic integral quantities by the flow evolution.
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I. INTRODUCTION

Turbulent flows subject to background rotation are an
important problem in fluid mechanics as several systems are
affected by rotation. Rotation affects the Earth’s atmosphere
and the oceans at large scales, it is crucial in many engineering
flows such as in turbomachinery, and is also important in many
astrophysical systems such as stellar convective regions and
gaseous planet atmospheres. As many applications arise in
nature and technology, it becomes important to understand
detailed properties of these flows.

In particular, a long-lasting problem in fluid mechanics
is that of the decay of turbulent fluctuations. The rate of
energy decay in turbulent flows is known to be sensitive to
initial conditions, and no single universal solution to the decay
appears to exist to which all flows converge asymptotically
for infinite Reynolds number [1]. Considering isotropic and
homogeneous turbulence at high Reynolds number, there are
two well known canonical cases as far as the energy spectrum
at large scales is concerned. Provided the cubic velocity
correlation tensor 〈ui(x)uj (x)uk(x + r)〉 decays sufficiently
fast for large r , these cases correspond to the so-called Saffman
spectrum for which E(k → 0) ∼ Lk2, and to the so-called
Batchelor spectrum where E(k → 0) ∼ Ik4. Which of these
spectra is observed depends on the initial conditions, and
other noncanonical cases may arise if the above condition
on the decay of the correlation tensor does not hold (see,
e.g., [2]). The quantities L and I are approximately conserved
integrals for fully developed, freely decaying turbulence in
each case (I is often called the Loitsyansky integral), and
have been used to determine the decay rate of the total
energy (see [3–6] for examples). The quasiconservation in
each case is associated with self-preserving solutions of the
von Kármán–Howarth equations, and can also be interpreted
in terms of conservation of linear and angular momentum.
While constancy of L is a consequence of linear momentum
conservation [5], constancy of I is a consequence of the
conservation of angular momentum [7,8].

The presence of background rotation breaks down isotropy
as a preferred direction arises along the axis of rotation (for
detailed studies of rotating turbulence, see [9–11]). Flows
subjected to rotation develop anisotropies which have been
shown to impact dramatically on the decay of energy, and there
are different and sometimes conflicting results in the literature
regarding the decay laws followed by the energy in rotating
flows. Moreover, theoretical arguments based on the isotropic
von Kármán–Howarth equations are not valid anymore, and
must be extended to include the effect of rotation. The integrals
I and L become tensors, and for axisymmetric flows, some of
the diagonal components of these tensors can be expected
to replace I and L as approximately conserved quantities.
Extensions of these arguments to anisotropic cases such as
conducting flows with an imposed magnetic field, rotating, or
stratified flows, have been recently derived in Refs. [7,12,13].

The development of anisotropies in rotating flows has been
reported both in experiments and simulations. Experiments
of freely decaying rotating turbulence show a reduction of
the energy transfer, evidenced by a decrease in the energy
decay rate. In the seminal experimental work using rotating
grid turbulence in Ref. [14], a slowdown of the energy decay
together with an anisotropic growth of the length scales
parallel and perpendicular to the rotation axis for increasing
rotation rates was reported. Also, a rotation dominated regime
was characterized based on macroscopic Rossby numbers.
The anisotropic growth of characteristic length scales was
also reported in Ref. [15], although in experiments that are
locally forced. An anisotropic energy flux with a trend towards
quasi-two-dimensionalization has been recently reported [16],
and is also evidenced, e.g., by a confirmation of the increase
in the correlation lengths along the axis of rotation [17,18].
Regarding the energy decay, experimental results for
nonrotating grid turbulence with integral scales smaller than
the size of the vessel [19] show an energy decay E ∼ t−1.1

compatible with the theoretical result E ∼ t−6/5 expected
for large-scale initial conditions with Saffman spectrum ∼k2.
In Ref. [20], a transition from a E ∼ t−6/5 decay to a decay
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law closer to ∼t−3/5 is reported once rotation starts affecting
the flow dynamics, together with a cyclone-anticyclone
asymmetry evidenced by positive skewness which grows with
rotation rate. The decay for bounded flows, in which initial
integral scales are close to the size of the vessel, seems to
change from E ∼ t−2 to ∼t−1 when rotation is present [19].

Numerical simulations and models also show a slowdown
of the energy decay for many different initial conditions
[11,21–24], together with the trend towards two dimension-
alization [22,25], and the higher cyclonic-over-anticyclonic
activity [26,27]. The first theoretical study of the decay of
rotating turbulence was reported in Ref. [28], and considered
the decrease of the energy transfer in the presence of rotation
to explain the observed slowdown in the decay, and to predict
decay rates for the energy. The exponents reported were
consistent with those obtained in simulations in Ref. [14], and
in the experiments in Ref. [19]. Also, a very close decay law
E ∼ t−0.8 was found in Ref. [11] for a wide range of Rossby
numbers (from very small to moderate values), when solving
equations for inertial wave turbulence and for an eddy damped
quasi-normal Markovian model (EDQNM3).

Later, in Ref. [25] a distinction was introduced between the
energy contained in modes with kz = 0 (E2D, corresponding
to two-dimensional, “slow,” or “vortical” modes) and modes
with kz �= 0 (E3D, corresponding to three-dimensional, “fast,”
or “wave” modes). The authors carried a comprehensive study
of the transfer of energy from 3D to 2D modes, for a wide range
of Rossby numbers, and found a nonmonotonic behavior for
the decay of energy for large, intermediate, and small Rossby
numbers. They focused on the intermediate Rossby range,
where the maximal energy transfer between 3D and 2D modes
occurs (see also [29]). In this range, they reported an initial
growth of E2D as soon as the decay begins, that eventually
results in a crossover with the monotonously decaying E3D.
Reference [30] also reported different behavior in the time
evolution of E2D and E3D, but considered only the decay
of the total energy E = E2D + E3D proposing a decay that
depends on the amount of background rotation E ∼ t−γ (�).
The dependence of γ on the rotation rate was derived using
phenomenological arguments resulting γ ∼ �−1.

This variety of solutions naturally led to parametric studies
of the initial condition space in numerical simulations. For
nonhelical rotating flows with initial integral scale close to
the size of the domain [24], a decay E ∼ t−1 was found in
simulations, in agreement with the experimental results [19].
For flows with initial integral scale sufficiently smaller than the
domain size, the case of initial conditions with energy spectra
∼k4 was studied in detail in Refs. [26,27], where different
decay rates were reported for the two- and three-dimensional
modes. While E3D was found to decay as in the case of
isotropic turbulence, a slower decay was found for E2D in the
intermediate-Rossby range as defined in Ref. [25]. The decay
of two-dimensional modes can be correctly explained if only
a few components of the Loytsiansky tensor are considered
(here referred in short as I⊥ and I‖ based on the symmetries
of the flow), and it was shown that I⊥ remains approximately
constant during the decay [27]. Finally, it was also found that
the decay is influenced by the amount of total helicity present
in the initial conditions, and by the initial degree of anisotropy
in the flow.

Recently, the anisotropic von Kármán–Howarth equation
was used to consider the decay of a rotating turbulent flow
with initial conditions following a Saffman spectrum [12].
The approximately conserved integral L in the isotropic and
homogeneous cases was generalized in the axisymmetric case
to two integrals L⊥ ∝ Lxx = Lyy and L‖ = Lzz. Assuming
that both L⊥ and L‖ are simultaneously conserved (or I⊥ and
I|| for the case of Batchelor initial spectrum), and using the
empirical result that characteristic length scales of the flow in
the direction parallel to the rotation axis grow linearly with
time [12], the author concludes that regardless of the initial
spectrum being ∼k2 or ∼k4, both cases should decay with the
same E ∼ t−1 law, thus implying that it is not possible to set
apart ∼k2 from ∼k4 turbulence by measuring the energy decay
exponent alone.

In this paper, we analyze whether the decay of rotating
flows is affected by long-range correlations, studying the
energy decay rate for flows with ∼k2 and ∼k4 initial
conditions. We first present a brief theoretical discussion of
conserved integral quantities for rotating turbulence using
a von Kármán–Howarth equation which includes a Coriolis
term due to rotation. We extend the previously derived results
for Saffman turbulence [12], considering Batchelor spectrum.
The results corroborate the phenomenological arguments used
in Ref. [27] to explain the decay laws found numerically
for energy spectra k4. In the second part of the paper, we
use numerical simulations to analyze the decay of rotating
Saffman and Batchelor turbulence in periodic domains. We
focus on the regime of intermediate Rossby numbers (initial
Ro ≈ 0.1 [25]), and therefore we will not attempt a study of
the dependence of the decay with the rotation rate. To the
best of our knowledge, the free decay of energy for ∼k2

initial conditions has not yet been numerically studied for
rotating turbulence, and the resulting decay laws seem to be
relevant for experiments. We show that the decay of energy
in two- and three-dimensional modes follows distinct power
laws for the cases of Batchelor and Saffman turbulence. The
decay laws are consistent with the predictions derived from
the anisotropic von Kármán–Howarth equation, and with the
approximate constancy of either L⊥ or I⊥ as the flow decays.

II. VON KÁRMÁN–HOWARTH EQUATIONS
AND SELF-SIMILAR DECAY

The dynamics of an incompressible fluid subjected to back-
ground rotation is described by the Navier-Stokes equation
with the addition of the Coriolis acceleration,

∂tu + ω × u + 2� × u = −∇P + ν∇2u, (1)

together with the incompressibility condition

∇ · u = 0. (2)

Here, u is the velocity field, ω = ∇ × u is the vorticity, the
centrifugal acceleration is absorbed in the total pressure per
unit of mass P , and ν is the kinematic viscosity. We assume
uniform density and the rotation axis in the z direction so
� = �ẑ, with � the rotation frequency.

We briefly present the derivation of the von Kármán–
Howarth equation including the Coriolis term in order to find
invariant quantities during the self-similar energy decay in
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rotating flows. To this end, we write the Navier-Stokes equation
in a rotating frame in index notation, and evaluated at two
points x and x′ = x + r,

∂ui

∂t
= − ∂

∂xk

(uiuk) − ∂p

∂xi

+ ν∇2ui − 2εimn�mun (3)

and

∂u′
j

∂t
= − ∂

∂x ′
k

(u′
ju

′
k) − ∂p′

∂x ′
j

+ ν∇′2u′
j − 2εjmn�mu′

n, (4)

where u′ = u(x′), ∇′2 denotes Laplacian with respect to the
x′ coordinate, and ε is the Levi-Civita symbol. Multiplying
Eq. (3) by u′

j , Eq. (4) by ui , summing and averaging, we get
the equation for the time evolution of the two-point velocity
correlation tensor

∂

∂t
〈uiu

′
j 〉 = −

(
∂

∂xk

〈u′
j uiuk〉 + ∂

∂x ′
k

〈uiu
′
ju

′
k〉

)

−
(

∂

∂xi

〈u′
jp〉 + ∂

∂x ′
j

〈uip
′〉
)

+ ν(∇2〈u′
jui〉.

+∇′2〈uiu
′
j 〉) − 2�m〈εimnunu

′
j + εjmnu

′
nui〉.

(5)

If � = 0, and assuming the cubic velocity correlation
tensor 〈uiuju

′
k〉 and the pressure-velocity correlation 〈uip

′〉
decay fast enough with r when r → ∞, two possible integral
conserved quantities can be obtained from Eq. (5). When
the terms on the right-hand side of the equation go to zero
as O(r−2), then it follows from the time derivative on the
left-hand side that

L =
∫

〈u · u′〉dr (6)

is conserved. This is know as the Saffman integral [5].
Multiplying Eq. (5) by r2, another possible invariant is
obtained when the terms on the left-hand side are O(r−4),
namely,

I = −
∫

r2〈u · u′〉dr, (7)

which is known as the Loitsyanski integral and whether it
actually remains constant or not in decaying isotropic and
homogeneous turbulence has been a matter of debate [31]. As
the energy spectrum for small values of k can be expanded as

E(k → 0) ∼ Lk2 + Ik4 + · · · , (8)

the integrals L or I are then expected to be quasi-invariants
during the decay for initial large-scale energy spectra of the
form ∼k2 (Saffman spectrum) [5,6] or ∼k4 (Batchelor spec-
trum) [4], respectively. Using these quasiconserved integrals,
the energy balance equation dE/dt ∼ −E3/2/l can be closed
(as either l3u2 or l5u2 are constant, with l the energy-containing
scale), and different decay laws arise for each scaling of the
initial spectra:

E(t) ∼
{

t−6/5 if E(k,t = 0) ∼ k2,

t−10/7 if E(k,t = 0) ∼ k4.
(9)

These decay laws have been observed in numerical as well as
in experimental studies (see, e.g., [3,5,6,19,20,27,32]).

These isotropic integrals have been also assumed to remain
constant during the decay of rotating turbulence with ∼k2

and ∼k4 large-scale energy spectra to predict energy decay
laws [28]. In the presence of rotation, the energy per unit
of time (flux) transferred towards smaller scales is reduced
as � is increased. A phenomenological expression consistent
with the observations is to assume that the flux is reduced by
the ratio of the turnover time τ ∼ l/E1/2 to the wave time
(2�)−1 [22,33–35], resulting in Ref. [28]

dE

dt
∼ − E2

�l2
. (10)

Further assuming I or L are conserved results in the following
decays:

E(t) ∼
{

t−3/5 if E(k,t = 0) ∼ k2,

t−5/7 if E(k,t = 0) ∼ k4.
(11)

Although these power laws are close to the behavior found in
experiments and simulations, as mentioned in the Introduction,
a better agreement with observations can be obtained when the
arguments are extended to consider the effect of anisotropy in
the flow.

In the anisotropic case, and assuming absence of long-range
correlations, only the final term in Eq. (5) can contribute to the
rate of change of integrals of the type

Iijmn =
∫

rmrn〈uiu
′
j 〉dr (12)

for the Batchelor case, or

Lij =
∫

〈uiu
′
j 〉dr (13)

for Saffman turbulence. It is important to point out here
that it is not trivial that in this case long-range correlations
should vanish as in the isotropic case [especially for the
pressure velocity correlations, see [11] where these terms
are computed using the Fourier transform of Eq. (5) and
the Poisson equation for the pressure fluctuations]. Thus, the
validity of the assumptions can only be verified a posteriori
from the results obtained from the numerical simulations.

Assuming long-range correlations vanish sufficiently fast at
large scales, the problem is that of finding which components
of the tensors in Eqs. (12) and (13) are still conserved in
the presence of rotation. We derive here the Batchelor case
(Iijmn) under the same assumptions for the decay of velocity
correlations with r as in the isotropic case, multiplying Eq. (5)
by rmrn and integrating to obtain

∂

∂t

∫
rmrn〈uiu

′
j 〉dr

= −2�l

∫
rmrn(εilk〈uku

′
j 〉 + εjlk〈u′

kui〉)dr. (14)

Let us assume �l = �zδlz, so

∂

∂t

∫
rmrn〈uiu

′
j 〉dr

= −2�z

∫
rmrn(εizk〈uku

′
j 〉 + εjzk〈u′

kui〉)dr. (15)
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As the flow has axisymmetry, we are interested in the diagonal
components of the tensor. For j = i,

�zεizk〈uku
′
i〉 = �z〈uxu

′
y − uyu

′
x〉, (16)

�zεjzk〈u′
kuj 〉 = �z〈u′

xuy − u′
yux〉, (17)

where all terms with i = z or j = z vanish. For m = n,
introducing r⊥ = (rx,ry,0) and u⊥ = (ux,uy,0) we get

∂

∂t

∫
r2
⊥〈u⊥u′

⊥〉dr

= −2
∫

r2
⊥�z[〈uxu

′
y − uyu

′
x〉 − 〈uxu

′
y − uyu

′
x〉]dr, (18)

so the terms on the right-hand side of the equation cancel and

∂

∂t

∫
r2
⊥〈u⊥u′

⊥〉dr = 0 (19)

or, equivalently,

I⊥ =
∫

r2
⊥〈u⊥u′

⊥〉dr = const. (20)

The case of Saffman turbulence was considered in Ref. [12].
The relevant components of the tensor Lij for axisymmetric
flows are Lxx = Lyy and Lzz. Similar arguments as those
described above lead, for the xx and yy components of the
von Kármán–Howarth equation, to the conservation of the
integral

L⊥ =
∫

〈u⊥u′
⊥〉dr = const. (21)

Note that both I⊥ and L⊥ resemble integrals that arise in
the context of the decay of 2D turbulence [36]. This is to
be expected as the spectrum of an axisymmetric flow can be
expanded, for the modes with k‖ = kz = 0, as

E(k⊥ → 0,k‖ = 0) ≈ L⊥k⊥ + I⊥k3
⊥ + · · · , (22)

which is (except for differences in the dimensions) also the
expansion of a 2D energy spectra. The resemblance can
be expected as rotating flows tend to become quasi-2D,
concentrating most of the energy in the slow modes with
k‖ = 0.

For axisymmetric turbulence and a Batchelor initial spec-
trum ∼k4 at large scales, Eq. (20) leads to

I⊥ ∼ l4
⊥l‖u2

⊥ ≈ const, (23)

where l⊥ and l‖ are characteristic (energy-containing) scales
in the perpendicular and parallel directions, respectively.
Assuming 2D and 3D modes are only weakly coupled in
rotating turbulence, from Eq. (10) we can write an equation
for the decay of the energy in 2D modes

dE2D

dt
∼ − E2

2D

�I 2
⊥

, (24)

and from Eq. (23)

dE2D

dt
∼ −E

5/2
2D l

1/2
‖

I
1/2
⊥ �

. (25)

Assuming E2D ∼ tγ , it follows that [27]

E2D ∼ t−2/3 (26)

if l‖ remains constant (which is reasonable as 2D modes
have no dependence on the direction parallel to rotation, and
therefore l‖ = l0 is the vertical size of the box).

For a ∼k2 initial spectra,

L⊥ ∼ l2
⊥l‖u2

⊥ ≈ const, (27)

and replacing in Eq. (24) leads to

dE2D

dt
∼ −E3

2Dl‖
L⊥�

, (28)

and a decay

E2D ∼ t−1/2. (29)

The results for the decay of energy in 2D modes in rotating
turbulence can be summarized as follows:

E2D(t) ∼
{

t−1/2 if E(k,t = 0) ∼ k2,

t−2/3 if E(k,t = 0) ∼ k4.
(30)

It is worth mentioning that the decay of rotating turbulence
with ∼k2 spectra is discussed in detail in Ref. [12], where
the constancy of L⊥ is obtained from the von Kármán–
Howarth equation. In that case, the author also considers the
von Kármán–Howarth equation for the zz component of the
two-point correlation tensor, and assuming cubic correlations
decay fast enough also for that component, obtains constancy
of L‖ ∼ u2

‖l
2
⊥l‖ as well as of L⊥. The constancy of these two

quantities, together with the empirical result l‖ = l0(1 + κ�t)
(where κ is a constant of order one [14,17]) leads to a
decay E2D(t) ∼ t−1. A similar argument for Batchelor ∼k4

turbulence leads to the same decay, which would result in an
impossibility to distinguish between ∼k2 and ∼k4 turbulence
by measuring the energy decay exponent alone.

Finally, it is interesting to point out that constancy of I⊥
and L⊥ can be respectively associated with conservation of the
z component of angular and linear momentum (see [7,12]). In
fact, the mean squared angular momentum Hz averaged over
a cylinder-shaped volume V is〈

H 2
z

〉 = 2πV l‖I⊥, (31)

while the linear momentum Pz is〈
L2

z

〉 = 2πV l‖L⊥. (32)

III. NUMERICAL SIMULATIONS

In the following, we resort to numerical simulations to
verify the validity of the assumptions and predictions discussed
in the previous section. As a well resolved initial spectrum ∼k2

or ∼k4 is needed to observe constancy of I or L in simulations
of isotropic and homogeneous turbulence (see, e.g., [3]), we
use large-eddy simulations (LES) in periodic boxes to be able
to have initial energy containing wave number k0 ≈ 40 with
large Reynolds numbers at a reasonable computing cost.

Before proceeding, we must caution the reader on how the
simulations in periodic boxes should be interpreted. Flows
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in periodic boxes are sometimes considered as describing a
homogeneous flow in an infinitely periodic domain. In this
work, we will interpret instead a flow in a periodic box
as artificially confined. Indeed, as was shown in Ref. [27],
when the integral scale of the flow is close to the domain
size, the eddies can not become larger and the energy decay
laws obtained are those of confined flows. The confinement is
artificial in the sense that the flows have no Ekman layers, as
the domain has no rigid walls. Moreover, the confinement also
results in a discrete set of wave numbers and selects a discrete
set of inertial waves which are normal modes of the domain,
unlike homogeneous rotating flows in infinite domains which
have continuous wave numbers (see, e.g., [11,37]). Note that
due to the discretization of wave numbers in the former case,
the existence and number of exact resonances depend on the
domain size [37] (as this is aggravated when boxes with large
aspect ratio and lower resolution in the vertical direction are
used, we restrict our study to boxes with aspect ratio of unity).

While these are unavoidable and inherent properties of the
simulations in periodic domains, the choice of a relatively large
initial energy containing wave number k0 ≈ 40 ensures that as
the equations are advanced in time, the energy containing scale
of the flow will remain smaller than the box size, and that a
large fraction of wave numbers will be available at large scales
for the system to evolve.

A. Equations and model

Equations (1) and (2) are solved numerically using a dynam-
ical subgrid-scale spectral LES model of rotating turbulence
in which only the large scales are explicitly resolved. The
statistical effect of unresolved scales on the scales larger than
a cutoff wave number (kc = N/2) are modeled with an eddy
viscosity and eddy noise that are obtained after solving in
each time step the eddy damped quasi-normal Markovian
(EDQNM) equations for the spectrum of the unresolved
scales. Details of the LES can be found in Ref. [38], and in
Refs. [39,40] for its extension to the rotating case. A validation
of the LES against direct numerical simulations (DNS) for the
case of freely decaying rotating turbulence can be found in
Ref. [27].

The simulation domain is a 3D periodic box of length 2π

with spatial resolution of 2563 grid points (resulting in kc =
128). A parallelized pseudospectral method without dealiasing
is used to solve spatial derivatives, and an explicit second-order
Runge-Kutta method is used to evolve in time [41].

B. Initial conditions

In Ref. [27], it was observed that the energy decay is
sensitive to the initial anisotropy of the flow (in particular, to
the initial amount of energy in 2D modes). To enforce spectral
and variance isotropy of the initial conditions, we generate
at t = 0 a random velocity field using the Craya-Herring
decomposition [42,43] which associates to each wave vector
k an orthonormal frame with axes dependent on k as

i(k) = k × α

|k × α| , j(k) = k × i
|k| ,

k
k

; (33)

α is an arbitrary but fixed unit vector which we choose to be
parallel to the rotation axis, α = (0,0,1). This representation

has been widely used to study turbulence (see, e.g., [44,45]).
Random initial conditions are created through a superposition
of harmonic modes with random phases φ(k),φ′(k) projected
over the Craya reference system for each k,

u(k) = eiφ i + eiφ′
j. (34)

Note that due to the geometry of the Craya-Herring decompo-
sition, there is no projection of u into k as the incompressibility
condition stands for u(k) ⊥ k.

As we are interested in the decay laws followed by
flows with a particular initial spectrum (either Batchelor’s or
Saffman’s), we can further control the shape of the initial
isotropic spectrum by multiplying each mode u(k) in Fourier
space with 0 < k � k0 by an amplitude Ckβ , where C is a
constant to get initial root-mean-square (rms) velocity U ≈ 1,
and β is a parameter used to adjust the power law in E(k). For
k > k0, the spectrum is continued by an exponential decay up
to kc (the maximum wave number explicitly resolved in the
simulations).

C. Spectra

In order to characterize the simulations, we consider
isotropic as well as anisotropic spectra. The latter are useful to
analyze rotating flows in which anisotropies grow with time. In
the simulations, the isotropic spectrum is defined by averaging
in Fourier space over spherical shells,

E(k,t) = 1

2

∑
k�|k|<k+1

u∗(k,t) · u(k,t), (35)

where the asterisk denotes complex conjugate. For the
anisotropic spectrum, the components of u(k) are integrated
around the axis of rotation to obtain a spectrum that depends
only on k⊥,

E(k⊥) = 1

2

∑
k⊥�|k⊥|<k⊥+1

u∗(k,t) · u(k,t). (36)

From now on, we will reference these two spectra simply as
E(k) and E(k⊥), respectively.

More detailed information on the energy spectral distribu-
tion of anisotropic flows can be obtained from the axisym-
metric energy spectrum e(k‖,k⊥) (see, e.g., [10,45,46]). This
spectrum is obtained after integrating the three-dimensional
energy spectrum around the axis of rotation to obtain a
spectrum that depends only on k‖ and k⊥, and that relates
to E(k⊥) as follows:

E(k⊥) =
∑
k‖

e(k‖,k⊥). (37)

Finally, the spectrum of the initial conditions is such that
the Saffman or Batchelor power laws ∼k2 or ∼k4 are imposed
in E(k). The relationship between the power law in E(k) and
of that of E(k⊥) can be derived as follows. Equation (35) in
the continuous limit can be expressed as

E(k,t) = 1

2

∫
�̂ii(k,t)k2d�k, (38)

where �̂ij is the spectral tensor, i.e., the Fourier trans-
form of the second-order velocity correlation function
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�ij 〈ui(x,t)uj (x + r,t)〉, and where �k is the solid angle in
Fourier space. Per virtue of Eq. (38), if E(k,0) ∼ kσ , then
�̂ii ∼ kσ−2. For axisymmetric flows we can write the energy
spectrum E(k⊥) integrating in complex space over cylindrical
shells,

E(k⊥,t) = 1

2

∫
�̂ii(k⊥,t)k⊥dφkdkz. (39)

If E(k,0) ∼ kσ , then

E(k⊥,0) = 1

2

∫
kσ−2k⊥dφkdkz

= 1

2

∫ (
k2
⊥ + k2

z

) σ−2
2 k⊥dφkdkz. (40)

When most of the energy is in the kz = 0 plane, then, from
Eq. (40),

E(k⊥,0) ∼ 1

l‖

∫
kσ−1
⊥ dφk. (41)

Even in the case in which the energy is not concentrated
in the kz = 0 plane (as in the isotropic initial conditions), the
dependence of E(k⊥) will be ∼kσ−1

⊥ as it follows directly from
Eq. (40). To summarize,

E(k) ∼ kσ ⇒ E(k⊥) ∼ kσ−1
⊥ . (42)

It is important to note that this simple relation between the
isotropic E(k) and the anisotropic E(k⊥) spectra only holds
for the isotropic initial conditions. However, the relation will be
useful to understand the power laws observed at large scales in
the following section. As an example, when analyzing rotating
turbulence with an initial isotropic spectrum E(k) ∼ k2, we
will be facing the case with initial E(k⊥) ∼ k⊥. Note the power
laws E(k⊥) ∼ k⊥ and E(k⊥) ∼ k3

⊥, resulting respectively for
Saffman and Batchelor isotropic initial conditions, are the
ones that arise in the expansion of the axisymmetric energy
spectrum for k‖ = 0 and k⊥ → 0 in Eq. (22).

IV. NUMERICAL RESULTS

We now present results stemming from four numerical
simulations (see Table I). All runs were initialized using the
random (Craya-Herring) initial conditions described in the
previous section, with an initial isotropic spectrum E(k) ∼ k2

between 0 < k � 40 for runs A and B, and E(k) ∼ k4 between
0 < k � 40 for runs C and D. Runs A and C correspond to
isotropic and homogeneous turbulence (no rotation), while
runs B and D are rotating, resulting in homogeneous but

anisotropic flows as time evolves. The purpose of simulations
A and C is to recover well known results for isotropic ∼k2 and
∼k4 turbulence, and to use them as a starting point to analyze
the more complex rotating cases. Note the decay of ∼k4 turbu-
lence (corresponding to runs C and D) was studied in detail in
Ref. [26], and is considered here to compare with the ∼k2 case.

Parameters of the runs listed in Table I are defined as
follows: The Reynolds number is

Re = lU

ν
, (43)

where U is the rms velocity and the energy-containing scale l

is defined from the isotropic energy spectrum E(k) as

l = 2π

∫
E(k)k−1dk∫

E(k)dk
. (44)

The Reynolds number based on the Taylor scale λ is

Reλ = λU

ν
, (45)

where

λ = 2π

( ∫
E(k)dk∫

E(k)k2dk

)1/2

. (46)

The Rossby number is

Ro = U

2�l
, (47)

while the micro-Rossby number is defined as

Roω = ω

2�
. (48)

This number should be initially of order one for the scrambling
effect of waves not to completely damp the nonlinear term
in the Navier-Stokes equation, which would result in just
an exponential decay of the energy [10]. Time-dependent
parameters in Table I are given for all runs at t = 0, and also at
t = 20 (roughly 10 turnover times after the self-similar decay
of energy starts).

A. Decay of nonrotating flows

Figure 1 shows the evolution of the isotropic energy
spectrum for run A, at times ranging from t = 0 to 20. The
initial ∼k2 law is approximately preserved over time at the
smallest wave numbers, while higher wave numbers decay
due to the effect of dissipation. This behavior is consistent
with the quasiconservation of L in Eq. (8), for which a
subsequent decay law E ∼ t−6/5 is expected for the energy.

TABLE I. Parameters used in the simulations: number of linear grid points N , kinematic viscosity ν, rotation frequency �, Reynolds
number Re, Taylor Reynolds number Reλ, Rossby number Ro, micro-Rossby number Roω, and a brief description of the initial energy spectrum
E(k): the power law followed at large scales and the range of scales where this power law is satisfied. Values of Re, Reλ, Ro, and Roλ are given
at t = 0, and at t = 20 between parentheses.

Run N ν � Re Reλ Ro Roω Initial E(k)

A 256 1.3 × 10−4 0 1580(330) 780(100) ∞(∞) ∞(∞) k2 (1 � k � 40)
B 256 1.3 × 10−4 33 1580(1090) 780(520) 0.15(0.004) 0.9(0.024) k2 (1 � k � 40)
C 256 1.3 × 10−4 0 1280(150) 730(60) ∞(∞) ∞(∞) k4 (1 � k � 40)
D 256 1.3 × 10−4 33 1280(360) 730(180) 0.18(0.002) 1.0(0.015) k4 (1 � k � 40)
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FIG. 1. Evolution of the isotropic energy spectrum E(k) for run A
from t = 0 to 20 with time increments �t = 0.5. Note how the initial
E ∼ k2 spectrum is preserved over time at the large scales (smaller
wave numbers).

Figure 2 shows the energy and enstrophy decay for runs A
and C. After a transient lasting for approximately 10 turnover
times, both runs decay with different power laws. In run A,
the energy decays close to E ∼ t−6/5 as predicted by Eq. (9),
and as expected from the shape of the large-scale spectrum
in Fig. 1. The enstrophy shows a faster decay close to Z ∼
t−11/5, consistently with phenomenological arguments which
indicate that E ∼ tα leads to Z ∼ tα−1 under the assumption
of isotropy, as

dE

dt
= −2νZ(t). (49)

The energy decay for run C is consistent with E ∼ t−10/7

as expected by Eq. (9), while the enstrophy decay is close to
Z ∼ t−17/7, also consistent with Eq. (49). The spectrum of run
C maintains a ∼k4 shape for large scales (not shown). All these
results are consistent with previous simulations and theoretical
results [3,27,32].

The prediction E ∼ t−6/5 for run A assumes L remains
constant during the decay. To verify this, and to further study
whether L also remains constant in the decay of rotating
turbulence with ∼k2 spectrum, we show the time evolution
of L for runs A and B in Fig. 3(a). We estimated L in two
different ways: A fit to the spectrum with a power law ∼k2

was computed for the smallest wave numbers to obtain the

FIG. 2. Energy evolution for runs A (solid) and C (dashed). Note
the decay laws with exponents ≈−6/5 and ≈−10/7, respectively,
after an initial transient of ≈10 turnover times. Slopes are shown as
a reference. Inset: enstrophy decay for the same runs. The decays
approach ≈−11/5 and ≈−17/7, respectively, after t≈10.

FIG. 3. (a) Evolution of the integral L normalized by its initial
value L(0) for the isotropic run A (solid line) and rotating run B
(dashed line). (b) Evolution of the integral I normalized by its initial
value I (0) for the isotropic run B (solid line) and rotating run D
(dashed line).

multiplicative prefactor in Eq. (8) (proportional to L if the
spectrum is ∼k2), as was done in Ref. [3]. We also computed
the two-point correlation function from the energy spectrum
using [31]

〈u · u′〉(r) = 2
∫ ∞

0
E(k)

sin(kr) − kr cos(kr)

(kr)3
dk, (50)

and then used Eq. (6) to compute L. Both methods give
consistent results and in the following we show results obtained
with the last method.

In run A, L decays to half its initial value between t = 0
and t ≈ 10, but after this time it only changes slowly with
time and can be considered almost constant (note the energy
between t = 10 and 100 changes by more than an order of
magnitude). However, L is far from being constant in run B;
the behavior of the rotating runs is discussed in more detail in
the next section. Similar results were found for the evolution
of I in simulations C and D, as shown in Fig. 3(b). In run C,
I grows during a short transient, but stays constant during the
self-similar decay of the energy.

While the behavior of L and I in the simulations is com-
patible with the theoretical and phenomenological arguments
discussed in Sec. II, the rapid growth of these quantities in
the runs with rotation seems to question the use of isotropic
integrals to derive decay laws for anisotropic flows.

B. Decay of rotating flows

The analysis for runs A and C was based on the isotropic
energy spectrum and on the quasi-invariance of the isotropic
integrals L and I . However, the growth of L (I ) in run
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FIG. 4. Evolution of the isotropic energy spectrum E(k) for run B
from t = 0 to 20 with time increments �t = 0.5. Note how the initial
E ∼ k2 spectrum for large scales (low wave numbers) is preserved
over time, but its overall amplitude increases.

B (D) suggests that different arguments should be used to
predict their energy decay. In this light, we now consider
the anisotropic quantities introduced in Sec. II, L⊥ and I⊥,
and show that further analysis can be done by studying the
evolution of anisotropic spectra and splitting the energy decay
in 2D and 3D modes. A similar method was used in Ref. [27]
to study ∼k4 turbulence.

The evolution of the isotropic spectrum for run B is shown
in Fig. 4, for different times from t = 0 to 20. As for run A,
its initial ∼k2 behavior for large scales is preserved over time.
However, its amplitude at large scales increases with time, in
agreement with the evolution of L.

The time evolution of the total energy in run B shows
that the decay is close to, but steeper than, E ∼ t−3/5. In
Fig. 5, we show the energy decay for this run (we also
show the ∼k4 case for comparison, i.e., run D). The decay
deviates from the expected ∼t−3/5 law derived via isotropic
arguments (in the same fashion, run D deviates from the
expected ∼t−5/7 law) and strictly speaking, a power law is
hard to identify. Indeed, as was shown in Fig. 3, both L and
I grow fast in runs B and D. As a result, arguments based on
the quasiconservation of L or I should be expected to fail to
predict the correct energy decay. The reason for this failure can
be associated with the fact that rotating flows are not isotropic,
and instead become axisymmetric with a tendency towards
two dimensionalization.

FIG. 5. Energy decay for runs B (solid line) and D (dashed line);
t−3/5 and t−5/7 power laws are shown as a reference, corresponding
to phenomenological predictions for Saffman and Batchelor rotating
turbulence based on isotropic conserved quantities.

FIG. 6. Evolution of the axisymmetric energy spectrum E(k⊥) for
run B from t = 0 to 20 with time increments �t = 0.5. The initial
shape E ∼ k⊥ of spectrum at large scales (low wave numbers) is
approximately preserved over time.

From the arguments in Sec. II, we expect only large-scale
correlations in the direction perpendicular to the axis of
rotation to be preserved, and either L⊥ or I⊥ to remain constant
depending on the initial conditions. Therefore, we analyze runs
B and D with the aid of the expansion in Eq. (22) and of the
anisotropic energy spectrum E(k⊥). Following Eqs. (24) and
(30), we will also separate the energy into the energy of slow
modes E2D, and the energy of fast modes E3D.

In Fig. 6, we show the time evolution of E(k⊥) in run B. Per
virtue of Eq. (42), as the isotropic spectrum is E(k) ∼ k2 for
small wave numbers, the anisotropic spectrum is E(k⊥) ∼ k⊥.
As for E(k), the shape of the spectrum is preserved during the
decay, and E(k⊥) ∼ k⊥ for small k⊥ at all times. However,
unlike the isotropic spectrum, E(k⊥) rapidly decreases its
amplitude during a short transient, and then the amplitude of
the spectrum at large scales stabilizes and varies only slowly
with time. Run D shows a similar behavior in E(k) and E(k⊥),
but following E(k⊥) ∼ k3

⊥ instead.
We saw in Sec. II that constancy of L⊥ (I⊥) may be expected

for E(k) ∼ k2 (∼k4) initial spectra if large-scale correlations
decay fast enough, and that phenomenological analysis leads
then to E2D(t) ∼ t−1/2 (E2D ∼ t−2/3). As for L, we estimate
L⊥ using two different methods: by fitting the spectrum for
small k⊥, and by using Eq. (21). The two-point longitudinal
correlation function for the axisymmetric case is estimated
using Bessel functions and the anisotropic perpendicular
spectrum (see, e.g., [26,31])

〈u⊥ · u′
⊥〉(r⊥) = 2

∫
E(k⊥)J0(k⊥r⊥)dk⊥. (51)

Both estimations give similar results and the curves discussed
below are obtained from Eqs. (21) and (51). The same
procedure was used to estimate I⊥ from Eq. (20).

In Fig. 7, we show the evolution of L⊥ and I⊥ normalized
by their values at t = 0, for runs B and D, respectively.
Although at early times their values decrease rapidly, they
remain afterwards approximately constant during the entire
simulation (note that in the same simulations and at the same
times, L and I increase by at least one order of magnitude).

The evolution of the energy for run B shows interesting
properties (see Fig. 8); E2D initially grows until t ≈ 10, when
it reaches its maximum value and begins to decrease. E3D

decreases faster than E2D and at t ≈ 20 both energies are
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FIG. 7. (a) Ratio L⊥(t)/L⊥(0) as a function of time for run B.
(b) Evolution of I⊥(t)/I⊥(0) in run D. Note that in both cases,
these magnitudes remain approximately constant after a short initial
transient.

comparable. After that time, the system is dominated by the
energy in the slow modes. Starting at t ≈ 10, both energies
show a decay compatible with power laws with different
exponents. E2D(t) decays close to ∼t−1/2, in agreement with
Eq. (30) and with the approximate constancy of L⊥, while E3D

decays close to ∼t−6/5, the value expected from Eq. (9) for the
decay of three-dimensional Saffman turbulence.

A distinct decay of E2D and E3D is also observed in run D
(corresponding to ∼k4 turbulence, also shown in Fig. 8). The
decay of the energy in slow modes is compatible with E2D(t) ∼
t−2/3, as expected for Batchelor turbulence from Eq. (30) and
with the approximate constancy of I⊥ shown in Fig. 7. The 3D
energy shows a decay that is close to E3D ∼ t−10/7.

The decay of E2D in runs B and D is compared in Fig. 9. The
two different decay laws followed by the energy in the two runs
can be clearly identified. The result indicates that the decay of
rotating turbulence is affected by large-scale correlations, as
different power laws can be observed for E(k) ∼ k2 and ∼k4

initial spectra.
The different power laws followed by E2D and E3D after

t ≈ 10 in both runs point to a negligible interchange of energy
between slow and fast modes at late times, as required for
an equation such as Eq. (24) to hold. Runs B and D have
initial values of the Rossby number which correspond to the
intermediate Rossby range studied in Ref. [25]. In this range,
maximal energy transfer from 3D to 2D modes takes place at
early times, with E2D in some cases growing from energy
in 3D modes as a result [see Fig. 8(a)]. After this phase,
the independent decay of the two energies implies that these
exchanges are small compared with, e.g., the transfer of energy
from vortical motions at large scales to vortical motions at

FIG. 8. (a) Time evolution of the energy E3D in modes with k‖ �= 0
(dashed line), and of the energy E2D in modes with k‖ = 0, for run
B. Power laws t−6/5 and t−1/2 are indicated as a reference, following
phenomenological arguments, respectively, for the decay of the 3D
energy and for the decay of the 2D energy based on approximate
constancy of L⊥ in Saffman turbulence. (b) Same for run D. The
power laws t−10/7 and t−2/3 correspond to the phenomenological
predictions for Batchelor turbulence.

smaller scales in E2D, and the transfer from 3D modes to 3D
modes in E3D.

C. Energy exchange between 2D and 3D modes

A measure of the exchange of energy between 2D and 3D
modes per unit of time can be obtained from the flux of energy
across planes in Fourier space with normal kz. The amount of
energy per unit of time going through any of such planes is

FIG. 9. E2D decay as a function of time for runs B (thin line) and
D (thick line). The expected decays based on constancy of L⊥ and
I⊥ are indicated as a reference. The agreement in this case is much
better than when assuming constancy of the isotropic integrals L and
I (see Fig. 5).
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given by

�(k‖) = −
∫∫∫ k‖

k‖=0
û∗

k · ̂(u · ∇u)k dkxdkydkz, (52)

where the integrals in kx and ky run over their entire range (see
[47] for definitions of anisotropic fluxes and spectral transfer
functions), and the hat denotes Fourier transform. The energy
transferred from 2D modes to 3D modes per unit of time is
then

S = �(k‖ = 0). (53)

When S is positive, it represents transfer of energy from 2D
to 3D motions (i.e., energy going from k‖ = 0 towards larger
values of k‖, resulting in an effective source of 3D energy
coming from 2D loses), while when negative it represents
transfer from 3D to 2D motions (i.e., a source of 2D energy
from 3D loses). For these sources (or losses) of energy to be
negligible, they must be small when compared with the time
derivatives dE2D/dt and dE3D/dt . When they are, the decay
of E2D and of E3D can be considered independently.

Figure 10 shows the function S normalized by |dE2D/dt |
and |dE3D/dt | for runs B and D. In both runs S is negative
before t ≈ 10, indicating energy goes from 3D to 2D modes,
and explaining the growth of E2D at early times in run B. Note
that in run B, |dE2D/dt | becomes zero at t ≈ 5, resulting in
an infinite value of the ratio S/|dE2D/dt | in Fig. 10(a). Later,
for t ≈ 10 in run B, and for t ≈ 20 in run C, S/|dE2D/dt |
and S/|dE3D/dt | become small, indicating the interchange of

FIG. 10. (a) Energy interchanged per unit of time S between 2D
and 3D modes, (a) normalized by |dE2D/dt | and (b) normalized by
|dE3D/dt |, for runs B (thin line) and D (thick line). Positive values of
S represent flux of energy from 2D to 3D modes, while negative values
indicate flux from 3D to 2D motions. At early times, S is negative,
indicating energy is transferred from 3D to 2D modes. After t ≈ 10
in run B, and t ≈ 10 in run D, when the distinct power law decays
are observed for E2D(t) and E3D(t) (Fig. 8), S becomes negligible.

energy between slow and fast modes becomes negligible when
compared with the energy decay rates, and justifying the use
of separate balance equations to study the decay of E2D and
E3D. Indeed, to have S � |dE2D/dt | and S � |dE3D/dt | is
enough to consider equations for the evolution of E2D and
E3D as was done in Sec. II, as is a more precise definition of
what was meant in that section by the condition of “weakly
coupled” 2D and 3D modes.

It is worth pointing out that the fact that S/|dE2D/dt | and
S/|dE3D/dt | are much smaller than unity does not imply
that the 2D and 3D modes are completely decoupled, and
only implies that almost no energy is interchanged between
slow and fast modes during the self-similar decay. Triadic
interactions, e.g., between two fast modes and one slow mode,
can still occur and be relevant, as long as the slow mode is
only an intermediary and does not receive from nor give net
energy to the fast modes. Indeed, such interactions between
slow and fast modes that preserve the 2D and 3D energies
separately would be required to have dE2D/dt proportional to
1/� in Eq. (25), as in their absence the decay of E2D should be
that of 2D Navier-Stokes and independent of � (note triadic
interactions between three slow modes are trivially resonant
and independent of �).

D. Energy spectral distribution

A deeper understanding of the development of anisotropy in
the flow can not be obtained solely from studying the reduced
spectrum E(k⊥) and the isotropic spectrum E(k). To further
investigate the energy spectral distribution, we present contour
plots of the axisymmetric energy spectrum e(k‖,k⊥) for runs
A, B, and D in Figs. 11–13, respectively. Note that in order
to obtain circular contour levels when the spectral distribution

FIG. 11. Axisymmetric energy spectrum e(k‖,k⊥)/ sin θ at differ-
ent times in run A. The circular contour levels indicate an isotropic
energy distribution.
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FIG. 12. Axisymmetric energy spectrum e(k‖,k⊥)/ sin θ at differ-
ent times in run D. As in run B, the spectral energy distribution is
anisotropic. The cross indicates the maximum of the spectrum at the
different times.

of the energy is isotropic, in these figures the axisymmetric
energy spectrum is divided by sin θ , where θ = arctan(k‖/k⊥).

In the absence of rotation (Fig. 11), the spectrum shows
an isotropic energy distribution evidenced by circular contour
levels which maintain their shape as the flow decays. However,

FIG. 13. Axisymmetric energy spectrum e(k‖,k⊥)/ sin θ at dif-
ferent times in run B. For rotating flows, the spectral distribution of
energy becomes anisotropic with more energy near the k‖ = 0 plane.
The cross indicates the maximum of the spectrum at the different
times.

FIG. 14. Axisymmetric energy spectrum e(k‖,k⊥) for run B for
different values of k‖ at (a) t = 5 and (b) t = 10. A k−3

⊥ slope is shown
as a reference.

when rotation is present, the spectral distribution of the energy
becomes anisotropic with more energy near the k‖ = 0 axis
(see Figs. 12 and 13). Already at t = 10, the maximum of the
axisymmetric energy spectrum takes place in the k‖ = 0 axis,
in agreement with the preferential transfer from 3D modes
towards slow 2D modes observed at early times in the flux in
Fig. 10 (as a matter of fact, the maximum of the spectrum is
already located in the k‖ = 0 axis for times as early as t = 5).

After t = 10, the exchange of energy between 2D and 3D
modes becomes negligible. As already observed in the time
evolution of E2D and E3D, the energy in the 3D modes decays
faster than the energy in 2D modes. This results in an increase
of the spectral anisotropy as time evolves, with most of the
energy near the k‖ = 0 axis at late times. At the same time, the
peak of the spectrum slowly moves through the k‖ = 0 axis
towards smaller values of k⊥, although even at late times the
peak is sufficiently far from k⊥ = 1.

The shape of the spectrum near the k‖ = 0 plane is of
interest for many theories of homogeneous rotating turbulence
(see, e.g., [11,48]). It is important to note that here the domain
with finite size results in a discrete set of values for k‖ so the
k‖ → 0 limit can not be studied, unlike homogeneous flows in
infinite domains for which k‖ is a continuum. Bearing in mind
this limitation, we show in Figs. 14 and 15 the axisymmetric
energy spectrum e(k‖,k⊥) for fixed values of k‖ (from 0 to 5),
for runs B and D at two different times (t = 5 and 10).

Figures 14 and 15 confirm that most of the energy is
contained in modes with k‖ = 0 (2D modes), and that the
wave number k⊥ at which the peak of the spectrum takes
place slowly decreases with time (although the wave number
is larger than k⊥ = 1). As an example, in run B the peak of
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FIG. 15. Axisymmetric energy spectra e(k‖,k⊥) for run D for
different values of k‖, at (a) t = 5 and (b) t = 10.

the spectrum for k‖ = 0 is at k⊥ ≈ 20 at t = 5, at k⊥ ≈ 15 at
t = 10, and at k⊥ ≈ 8 at t = 35. The spectrum for modes with
k‖ = 0 also shows a positive slope for wave numbers smaller
than the energy containing wave number, and the slope seems
to be approximately preserved as the system evolves in time.

The spectra e(k‖,k⊥) for k‖ � 1 are approximately flat for
small wave numbers (especially for run B), and show a slope
compatible with a k−3

⊥ power law (especially for early times,
at t = 5, and for the spectrum corresponding to k‖ = 1). This
is consistent with the scaling e(k‖,k⊥) ∼ k

−1/2
‖ k−3

⊥ valid for
k‖/k⊥ � 1 derived from inertial wave turbulence equations in
Ref. [48], and also observed before in numerical simulations
in Ref. [30].

V. CONCLUSIONS

We have analyzed numerical simulations of freely decaying
rotating turbulence in periodic domains in the regime of

intermediate Rossby number (Ro ≈ 0.1), with initial energy
spectra ∼k2 and ∼k4. We first presented a brief theoreti-
cal discussion of conserved integral quantities for rotating
turbulence using a von Kármán–Howarth equation which
includes the Coriolis term due to rotation, extending previously
derived results for Saffman turbulence [12], considering also
the Batchelor spectrum. Assuming 2D and 3D modes are
only weakly coupled in rotating turbulence, constancy of the
anisotropic integral quantities L⊥ or I⊥ was used to derive
phenomenologically the energy decay rate expected for energy
in 2D modes.

In simulations without rotation, we recovered well known
results for isotropic ∼k2 and ∼k4 turbulence, and also verified
the approximate constancy of the isotropic integrals L and
I . On the other hand, in the simulations with rotation,
a self-similar decay was difficult to identify for the total
energy, while L and I were found to grow rapidly during
the entire decay. However, the decay of energy in two- and
three-dimensional modes followed distinct power laws, in
agreement with the phenomenological predictions and with
constancy of L⊥ and I⊥, which were also observed to remain
approximately constant in the simulations.

The separate power laws followed by E2D(t) and E3D(t) in
decaying rotating turbulence require the interchange of energy
between slow and fast modes to be negligible. We verified that
this was the case by studying the flux of energy across planes
with normal kz in Fourier space. The results showed that energy
is initially transferred from 3D to 2D modes, as expected
for rotating turbulence at intermediate Rossby number [25],
but that later the flux of energy between 3D and 2D modes
becomes negligible. Contour levels of the axisymmetric energy
spectral distribution show that in presence of rotation, the
energy accumulates rapidly near the k‖ = 0 plane, and that at
later times the anisotropy increases as a result of the different
decay rates of the E2D and E3D components of the total
energy.

Altogether, the results show that rotating turbulence is
indeed affected by initial large-scale correlations in the
flow, as different decay laws arise for ∼k2 and ∼k4 initial
spectra.
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