335 research outputs found
Solar neutrino detection in a large volume double-phase liquid argon experiment
Precision measurements of solar neutrinos emitted by specific nuclear
reaction chains in the Sun are of great interest for developing an improved
understanding of star formation and evolution. Given the expected neutrino
fluxes and known detection reactions, such measurements require detectors
capable of collecting neutrino-electron scattering data in exposures on the
order of 1 ktonne yr, with good energy resolution and extremely low background.
Two-phase liquid argon time projection chambers (LAr TPCs) are under
development for direct Dark Matter WIMP searches, which possess very large
sensitive mass, high scintillation light yield, good energy resolution, and
good spatial resolution in all three cartesian directions. While enabling Dark
Matter searches with sensitivity extending to the "neutrino floor" (given by
the rate of nuclear recoil events from solar neutrino coherent scattering),
such detectors could also enable precision measurements of solar neutrino
fluxes using the neutrino-electron elastic scattering events. Modeling results
are presented for the cosmogenic and radiogenic backgrounds affecting solar
neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at
LNGS depth (3,800 meters of water equivalent). The results show that such a
detector could measure the CNO neutrino rate with ~15% precision, and
significantly improve the precision of the 7Be and pep neutrino rates compared
to the currently available results from the Borexino organic liquid
scintillator detector.Comment: 21 pages, 7 figures, 6 table
Demonstration and Comparison of Operation of Photomultiplier Tubes at Liquid Argon Temperature
Liquified noble gases are widely used as a target in direct Dark Matter
searches. Signals from scintillation in the liquid, following energy deposition
from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should
be recorded down to very low energies by photosensors suitably designed to
operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter
searches currently implement photo multiplier tubes for signal read-out. In the
last few years PMTs with photocathodes operating down to liquid Argon
temperatures (87 K) have been specially developed with increasing Quantum
Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod.
R11065 with peak QE up to about 35%, has been extensively tested within the R&D
program of the WArP Collaboration. During these testes the Hamamatsu PMTs
showed superb performance and allowed obtaining a light yield around 7
phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12%
range, sufficient for detection of events down to few keVee of energy
deposition. This shows that this new type of PMT is suited for experimental
applications, in particular for new direct Dark Matter searches with LAr-based
experiments
Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector
Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged
particle imaging capability with remarkable spatial resolution. Precise event
reconstruction procedures are critical in order to fully exploit the potential
of this technology. In this paper we present a new, general approach of
three-dimensional reconstruction for the LAr TPC with a practical application
to track reconstruction. The efficiency of the method is evaluated on a sample
of simulated tracks. We present also the application of the method to the
analysis of real data tracks collected during the ICARUS T600 detector
operation with the CNGS neutrino beam.Comment: Submitted to Advances in High Energy Physic
Search for anomalies in the {\nu}e appearance from a {\nu}{\mu} beam
We report an updated result from the ICARUS experiment on the search for
{\nu}{\mu} ->{\nu}e anomalies with the CNGS beam, produced at CERN with an
average energy of 20 GeV and travelling 730 km to the Gran Sasso Laboratory.
The present analysis is based on a total sample of 1995 events of CNGS neutrino
interactions, which corresponds to an almost doubled sample with respect to the
previously published result. Four clear {\nu}e events have been visually
identified over the full sample, compared with an expectation of 6.4 +- 0.9
events from conventional sources. The result is compatible with the absence of
additional anomalous contributions. At 90% and 99% confidence levels the limits
to possible oscillated events are 3.7 and 8.3 respectively. The corresponding
limit to oscillation probability becomes consequently 3.4 x 10-3 and 7.6 x 10-3
respectively. The present result confirms, with an improved sensitivity, the
early result already published by the ICARUS collaboration
Registration of AWC 612M Chickpea Mutant Germplasm Line Resistant to Leaf Miner (Liriomyza cicerina)
Chickpea leaf miner (Liriomyza cicerina Rond.) (Diptera: Agromyzidae) is a distinctive, important insect pest of chickpea (Cicer arietinum L.) that can cause substantial yield losses if it is not adequately controlled. Host plant resistance to leaf miner is one of the best control options in sustainable farming. Since there are insufficient resistant sources in cultivated chickpea, an accession (AWC 612) of C. reticulatum Ladiz., crossable with cultivated chickpea, was subjected to 200, 300, and 400 Gy gamma rays to increase variation through mutating, and the mutant germplasm line AWC 612M (Reg. No. GP-305, PI 688421), with a multipinnate leaf type, was developed and selected in the M3. AWC 612M was selected for its resistance against leaf miner under natural epidemic conditions in the field for 10 yr from 2007 to 2016. AWC 612M was free from damage, while the susceptible chickpea line ILC 3397 had numerous mines in >91% of leaflets and leaf drop >31%. AWC 612M, derived from C. reticulatum, which is compatible with the cultivated chickpea, represents a new source for breeding programs of resistance to leaf miner
Direct evidence of milk consumption from ancient human dental calculus.
Milk is a major food of global economic importance, and its consumption is regarded as a classic example of gene-culture evolution. Humans have exploited animal milk as a food resource for at least 8500 years, but the origins, spread, and scale of dairying remain poorly understood. Indirect lines of evidence, such as lipid isotopic ratios of pottery residues, faunal mortality profiles, and lactase persistence allele frequencies, provide a partial picture of this process; however, in order to understand how, where, and when humans consumed milk products, it is necessary to link evidence of consumption directly to individuals and their dairy livestock. Here we report the first direct evidence of milk consumption, the whey protein β-lactoglobulin (BLG), preserved in human dental calculus from the Bronze Age (ca. 3000 BCE) to the present day. Using protein tandem mass spectrometry, we demonstrate that BLG is a species-specific biomarker of dairy consumption, and we identify individuals consuming cattle, sheep, and goat milk products in the archaeological record. We then apply this method to human dental calculus from Greenland's medieval Norse colonies, and report a decline of this biomarker leading up to the abandonment of the Norse Greenland colonies in the 15(th) century CE
Experimental search for the LSND anomaly with the ICARUS detector in the CNGS neutrino beam
We report an early result from the ICARUS experiment on the search for nu_mu
to nu_e signal due to the LSND anomaly. The search was performed with the
ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS
neutrinos from CERN at an average energy of about 20 GeV, after a flight path
of about 730 km. The LSND anomaly would manifest as an excess of nu_e events,
characterized by a fast energy oscillation averaging approximately to
sin^2(1.27 Dm^2_new L/ E_nu) = 1/2. The present analysis is based on 1091
neutrino events, which are about 50% of the ICARUS data collected in 2010-2011.
Two clear nu_e events have been found, compared with the expectation of 3.7 +/-
0.6 events from conventional sources. Within the range of our observations,
this result is compatible with the absence of a LSND anomaly. At 90% and 99%
confidence levels the limits of 3.4 and 7.3 events corresponding to oscillation
probabilities of 5.4 10^-3 and 1.1 10^-2 are set respectively. The result
strongly limits the window of open options for the LSND anomaly to a narrow
region around (Dm^2, sin^2(2 theta))_new = (0.5 eV^2, 0.005), where there is an
overall agreement (90% CL) between the present ICARUS limit, the published
limits of KARMEN and the published positive signals of LSND and MiniBooNE
Collaborations.Comment: 10 pages, 7 figure
A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS
The OPERA collaboration has claimed evidence of superluminal {\nu}{_\mu}
propagation between CERN and the LNGS. Cohen and Glashow argued that such
neutrinos should lose energy by producing photons and e+e- pairs, through Z0
mediated processes analogous to Cherenkov radiation. In terms of the parameter
delta=(v^2_nu-v^2_c)/v^2_c, the OPERA result implies delta = 5 x 10^-5. For
this value of \delta a very significant deformation of the neutrino energy
spectrum and an abundant production of photons and e+e- pairs should be
observed at LNGS. We present an analysis based on the 2010 and part of the 2011
data sets from the ICARUS experiment, located at Gran Sasso National Laboratory
and using the same neutrino beam from CERN. We find that the rates and
deposited energy distributions of neutrino events in ICARUS agree with the
expectations for an unperturbed spectrum of the CERN neutrino beam. Our results
therefore refute a superluminal interpretation of the OPERA result according to
the Cohen and Glashow prediction for a weak current analog to Cherenkov
radiation. In particular no superluminal Cherenkov like e+e- pair or gamma
emission event has been directly observed inside the fiducial volume of the
"bubble chamber like" ICARUS TPC-LAr detector, setting the much stricter limit
of delta < 2.5 10^-8 at the 90% confidence level, comparable with the one due
to the observations from the SN1987A.Comment: 17 pages, 6 figure
- …