2,495 research outputs found

    Giving Competency Its Day in Court - In re Fellman

    Get PDF
    This Note will examine the decision in In re Fellman,4 where the Superior Court of Pennsylvania determined that the issue of competency was a matter for the courts, not arbitration, to determine.5 Furthermore, this Note will explain how Fellman is consistent with cases concerning different issues, but which similarly denied arbitrators authority based upon similar reasoning

    Power system applications of fiber optic sensors

    Get PDF
    This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described

    Bi and Mn Nanostructures on the Si(001) Surface

    Get PDF
    With the increasing miniaturisation of electronics, it is becoming important to study nanoscale systems, down to the control and manipulation of individual atoms. This work focuses on several different structures, all on the technologically important Si(001) surface, including individual spin active Bi adatoms, the Bi nanoline and the Mn nanowire. Research in this area is guided by both experimental results and theoretical simulations. Here I explore the latter, via Density Functional Theory, with a particular focus on simulated STM images, demonstrating both the successes and limitations of these techniques. This work aims to both explain experimental results and suggest new experimental avenues. Adsorption of individual Bi atoms on Si(001) shows promise for quantum computing applications, due to the existence of spin active adsorption sites. However, rapid diffusion makes them unsuitable for real world applications. Selective depassivation of the H:Si(001) surface is shown to be a viable technique for trapping spin active Bi atoms, and offers the possibility of targeted Bi incorporation. Nanolines of Bi, which spontaneously form on Si(001) have been extensively studied, both experimentally and theoretically. Recent experimental STM results have shown a strong bias dependence to the appearance of the nanolines, and here I present simulations which successfully explain these results. I also present further studies into defects on the nanoline. I also studied nanowires that form when Mn is adsorbed on Si(001), which offer the possibility of magnetic nanowires. However, at present their physical structure is still unknown, despite prior efforts to address this. Here I present a thorough investigation into potential models for the Mn nanowire, encompassing prior models, their extensions and other surface or subsurface Mn arrangements. This remains an open problem, although identification of specific features in the experimental images, and deficiencies in previous models, has furthered our understanding of the problem

    Electronic coupling between Bi nanolines and the Si(001) substrate: An experimental and theoretical study

    Full text link
    Atomic nanolines are one dimensional systems realized by assembling many atoms on a substrate into long arrays. The electronic properties of the nanolines depend on those of the substrate. Here, we demonstrate that to fully understand the electronic properties of Bi nanolines on clean Si(001) several different contributions must be accounted for. Scanning tunneling microscopy reveals a variety of different patterns along the nanolines as the imaging bias is varied. We observe an electronic phase shift of the Bi dimers, associated with imaging atomic p-orbitals, and an electronic coupling between the Bi nanoline and neighbouring Si dimers, which influences the appearance of both. Understanding the interplay between the Bi nanolines and Si substrate could open a novel route to modifying the electronic properties of the nanolines.Comment: 6 pages (main), 2 pages (SI), accepted by Phys. Rev.
    • …
    corecore