Atomic nanolines are one dimensional systems realized by assembling many
atoms on a substrate into long arrays. The electronic properties of the
nanolines depend on those of the substrate. Here, we demonstrate that to fully
understand the electronic properties of Bi nanolines on clean Si(001) several
different contributions must be accounted for. Scanning tunneling microscopy
reveals a variety of different patterns along the nanolines as the imaging bias
is varied. We observe an electronic phase shift of the Bi dimers, associated
with imaging atomic p-orbitals, and an electronic coupling between the Bi
nanoline and neighbouring Si dimers, which influences the appearance of both.
Understanding the interplay between the Bi nanolines and Si substrate could
open a novel route to modifying the electronic properties of the nanolines.Comment: 6 pages (main), 2 pages (SI), accepted by Phys. Rev.