21 research outputs found

    A General Approach for Predicting the Filtration of Soft and Permeable Colloids: The Milk Example

    Get PDF
    Membrane filtration operations (ultra-, microfiltration) are now extensively used for concentrating or separating an ever-growing variety of colloidal dispersions. However, the phenomena that determine the efficiency of these operations are not yet fully understood. This is especially the case when dealing with colloids that are soft, deformable, and permeable. In this paper, we propose a methodology for building a model that is able to predict the performance (flux, concentration profiles) of the filtration of such objects in relation with the operating conditions. This is done by focusing on the case of milk filtration, all experiments being performed with dispersions of milk casein micelles, which are sort of ″natural″ colloidal microgels. Using this example, we develop the general idea that a filtration model can always be built for a given colloidal dispersion as long as this dispersion has been characterized in terms of osmotic pressure Π and hydraulic permeability k. For soft and permeable colloids, the major issue is that the permeability k cannot be assessed in a trivial way like in the case for hard-sphere colloids. To get around this difficulty, we follow two distinct approaches to actually measure k: a direct approach, involving osmotic stress experiments, and a reverse-calculation approach, that consists of estimating k through well-controlled filtration experiments. The resulting filtration model is then validated against experimental measurements obtained from combined milk filtration/SAXS experiments. We also give precise examples of how the model can be used, as well as a brief discussion on the possible universality of the approach presented here

    Le débriefing postsimulation en santé. Que nous apprend-il et comment ?

    No full text
    International audienceAims Debriefing is a fundamental part of simulation training in health care, but remains a complex and difficult process to put in place. The aim of this article is to define the postsimulation debriefing, to clarify objectives and identify the main principles of debriefing with regard to the current literature. Results Several definitions of postsimulation debriefing exist in the literature, and have in common the reflexive practice with respect to action performed by the participants. This guided or facilitated analysis is carried out in a context of social interaction within an experiential learning cycle. The purpose of debriefing is to understand the student’s reaction and reasoning based on observations (from actions and results of the simulation), so as to validate or rebuild them. Debriefing is typically carried out in three phases: reaction–description, analysis, and summary–transposition, all of which need to be adapted to account for multiple variables. In 2011, Raemer et al. proposed that a debriefing takes place using the 5 “W” principles: Who, What, When, Where, and Why, which forms the basis of our analysis. Conclusion Debriefing is one of the principal parts of a fullscale medical simulation. It is a complex multiple-level process. The completion of a debriefing remains a difficult exercise for trainers. Beyond the broad principles discussed in this article, many questions remain unanswered

    Cation Charge Dependence of the Forces Driving DNA Assembly

    Get PDF
    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental for understanding the basis of DNA-DNA interactions. Here, we measure DNA force-distance curves for a homologous set of arginine peptides. All forces are well fit as the sum of two exponentials with 2.4- and 4.8-Å decay lengths. The shorter-decay-length force is always repulsive, with an amplitude that varies slightly with length or charge. The longer-decay-length force varies strongly with cation charge, changing from repulsion with Arg1 to attraction with Arg2. Force curves for a series of homologous polyamines and the heterogeneous protein protamine are quite similar, demonstrating the universality of these forces for DNA assembly. Repulsive amplitudes of the shorter-decay-length force are species-dependent but nearly independent of charge within each species. A striking observation was that the attractive force amplitudes for all samples collapse to a single curve, varying linearly with the inverse of the cation charge

    Protein Structure and Hydration Probed by SANS and Osmotic Stress

    Get PDF
    Interactions governing protein folding, stability, recognition, and activity are mediated by hydration. Here, we use small-angle neutron scattering coupled with osmotic stress to investigate the hydration of two proteins, lysozyme and guanylate kinase (GK), in the presence of solutes. By taking advantage of the neutron contrast variation that occurs upon addition of these solutes, the number of protein-associated (solute-excluded) water molecules can be estimated from changes in both the zero-angle scattering intensity and the radius of gyration. Poly(ethylene glycol) exclusion varies with molecular weight. This sensitivity can be exploited to probe structural features such as the large internal GK cavity. For GK, small-angle neutron scattering is complemented by isothermal titration calorimetry with osmotic stress to also measure hydration changes accompanying ligand binding. These results provide a framework for studying other biomolecular systems and assemblies using neutron scattering together with osmotic stress

    Attractive Forces between Cation Condensed DNA Double Helices

    Get PDF
    By combining single-molecule magnetic tweezers and osmotic stress on DNA assemblies, we separate attractive and repulsive components of the total intermolecular interaction between multivalent cation condensed DNA. Based on measurements of several different cations, we identify two invariant properties of multivalent cation-mediated DNA interactions: repulsive forces decay exponentially with a 2.3 ± 0.1 Å characteristic decay length and the attractive component of the free energy is always 2.3 ± 0.2 times larger than the repulsive component of the free energy at force-balance equilibrium. These empirical constraints are not consistent with current theories that attribute DNA-DNA attractions to a correlated lattice of counterions. The empirical constraints are consistent with theories for Debye-Hückel interactions between helical line charges and with the order-parameter formalism for hydration forces. Each of these theories posits exponentially decaying attractions and, if we assume this form, our measurements indicate a cation-independent, 4.8 ± 0.5 Å characteristic decay length for intermolecular attractions between condensed DNA molecules
    corecore