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ABSTRACT By combining single-molecule magnetic tweezers and osmotic stress on DNA assemblies, we separate attractive
and repulsive components of the total intermolecular interaction between multivalent cation condensed DNA. Based on mea-
surements of several different cations, we identify two invariant properties of multivalent cation-mediated DNA interactions: re-
pulsive forces decay exponentially with a 2.3 6 0.1 Å characteristic decay length and the attractive component of the free
energy is always 2.3 6 0.2 times larger than the repulsive component of the free energy at force-balance equilibrium. These
empirical constraints are not consistent with current theories that attribute DNA-DNA attractions to a correlated lattice of
counterions. The empirical constraints are consistent with theories for Debye-Hückel interactions between helical line charges
and with the order-parameter formalism for hydration forces. Each of these theories posits exponentially decaying attractions
and, if we assume this form, our measurements indicate a cation-independent, 4.8 6 0.5 Å characteristic decay length for
intermolecular attractions between condensed DNA molecules.

INTRODUCTION

Inside cells, viruses, and nanoparticles used for nonviral gene

therapy, DNA is tightly packaged (‘‘condensed’’) by multi-

valent cations (1). Within these dense structures, DNA

double helices remain separated by 7–12 Å of water, indi-

cating a balance of long-range attractive and repulsive forces.

Because the intermolecular interactions that stabilize these

structures appear to be outside the scope of traditional theo-

ries for intermolecular forces, they have inspired develop-

ment of new theories for more than 20 years. These include

attractive electrostatic forces due to counterion correlations

(2–5), screened Debye-Hückel interactions between helical

molecules (6–8), and water-structuring or hydration forces

(9,10). A lack of experimental measurements has prevented

further development and discrimination among these alter-

nate theories. Here, we combine single-molecule magnetic

tweezers with osmotic stress on DNA assemblies. From these

measurements, we distinguish attractive and repulsive com-

ponents of the intermolecular interaction.

Attraction and repulsion are strikingly correlated. Despite

structural and chemical differences among counterions and

differences in the structure and energetics of the condensed

DNA, we find that the attractive part of the free energy is

always about twice the repulsive part of the free energy at

force-balance equilibrium. Using this constraint and the ex-

perimentally observed 2.3 6 0.1 Å exponentially decaying

repulsive forces, we evaluate theories developed to describe

forces between multivalent cation condensed DNA. Current

theories for electrostatic counterion correlations (2–5) predict

that the ratio of attractive to repulsive free energies should

vary between 1.2 and 1.8 and are not consistent with our

experimental observations. A ratio of attractive to repulsive

free energy approximately equal to two was predicted for

electrostatic interactions between helical molecules (6–8) and

for hydration or water-structuring forces (9–11). If we as-

sume the exponential form for attractive forces predicted by

both of these theories, our measurements indicate a cation-

independent 4.8 6 0.5 Å characteristic decay length for

attractions between multivalent cation condensed DNA.

According to the interpretations of these theories, this char-

acteristic decay length reflects either the 5.4 Å helical period

of DNA (helical pitch/2p) (6–8) or the ;4 Å correlation

length in liquid water (12).

MATERIALS AND METHODS

Reagents

Spermidine [H2N(CH2)3NH(CH2)4NH2] trihydrochloride (Sigma-Aldrich,

St. Louis, MO, No. S-2501), spermine [H2N(CH2)3NH(CH2)4NH(CH2)3NH2]

tetrahydrochloride (Fluka, Buchs, Switzerland, No. 85607), and Co(NH3)6Cl3
(Sigma-Aldrich, No. H7891) were used as purchased, without further purification.

The synthetic alkyl hexamine,1,21-diamino-4,9,13,18-tetraazaheneicosane

[H2N(CH2)3NH(CH2)3NH(CH2)3NH(CH2)3NH(CH2)3NH2] hexahydrochlo-

ride, was synthesized as previously described (13). We will abbreviate this

compound as ‘‘sp61’’ to emphasize its homology with spermidine and

spermine.

High molecular weight chicken blood DNA for osmotic stress measure-

ments was prepared as previously described (14). Poly(ethylene glycol)

(molecular weight 8000) was purchased from Fluka (Fluka Biochemika,

microselect grade).

l-DNA (Sigma-Aldrich, No. D3779) for magnetic tweezers measure-

ments was biotinylated by first heating to 65�C to separate the cohesive ends

and then incubated with Klenow polymerase (Sigma-Aldrich, No. D3779) in

biotin-14-dATP (Invitrogen, Carlsbad, CA, No. 19524-016), biotin-14-

dCTP (Invitrogen, No. 19518-018), dGTP, and TTP (Sigma-Aldrich, No.

DNTP-100) for 1.5 h according to standard protocols (15). Streptavidin-

coated latex beads (5 mm diameter) (Bang’s Laboratories, Fishers, IN, No.
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CP01N/7015) and 2.8 mm diameter streptavidin-coated paramagnetic beads

(Dynal Biotech, Oslo, Norway, No. M270) were used as purchased.

All osmotic-stress and magnetic tweezers measurements were carried out

in 10 mM Tris buffer (pH 7.4) at room temperature.

Magnetic tweezers

The basic operation of our magnetic tweezers apparatus consists of a single

l-DNA molecule stretched between an immobile 5 mm bead and a 2.8 mm

paramagnetic bead. The stretching force was controlled by varying the

separation between the paramagnetic bead and a small neodymium magnet

(Indigo Instruments, Waterloo, Ontario, Canada, No. 43534) positioned next

to the microscope using a close-loop motorized micrometer (New Focus,

San Jose, CA, No. 8310). The trajectory of the magnet was adjusted so that

the magnetic force in the focal direction balanced the gravitational force

on the magnetic particle. This kept the bead and, hence the net force, purely

in the focal plane.

A 1.1 3 1.1 mm square cross-section glass capillary (Vitrocom, Mountain

Lakes, NJ, No. 8280-050) was used for a flow cell. Similar procedures have

coated the flow cell with streptavidin to immobilize one end of a biotinylated

DNA (15). We found that coating caused the streptavidin-coated beads to

adhere strongly to the surface. To circumvent this problem, we immersed a

smaller 0.1 3 0.1 mm cross-section glass capillary (Vitrocom, No. 8505-

050) in 1% biotinylated bovine serum albumin (Sigma-Aldrich, No. A8549),

10 mM Tris buffer for 45 min and inserted this into the flow cell. Five di-

ameter streptavidin-coated beads (5 mm) were immobilized on the side of the

smaller 0.1 3 0.1 mm glass capillary, circumventing problems with the beads

adhering to the 1.1 3 1.1 mm flow cell. The edge of the 0.1 3 0.1 mm

capillary can be seen as the vertical line abutting the 5 mm bead in Fig. 1.

A mix of 1 3 106 5 mm beads and 1 3 105 2.8 mm beads in 25 mL of 100

mM borate buffer (pH 8.0)/0.1% bovine serum albumin/0.01% NaN3 was

injected into a 50 mm length of the flow cell. The beads were allowed to

sediment for ;5 min until they concentrated on the bottom of the flow cell.

Biotinylated l-DNA (1 fmol) in 25 mL of 100 mM borate buffer was then

injected into the flow cell, and tubing attached. Pairs of beads attached by

l-DNA molecules were identified using optical tweezers to pull on the 5 mm

latex particles and searching for ones with an attached 2.8 mm paramagnetic

bead. When a set of tethered beads was identified, the optically trapped 5 mm

particle was moved over to the 0.1 3 0.1 mm biotinylated bovine serum

albumin-coated capillary, positioned ;10 mm from the bottom of the flow

cell, and then pushed against the capillary wall until it adhered. The magnetic

force was calibrated using the thermal fluctuations of the tethered para-

magnetic bead (16). We confirmed that beads were tethered by a single DNA

molecule by measuring the force-extension curve and verifying a persistence

length of ;50 nm and a length of ;16 mm (17). Condensation forces were

identified by stretching the DNA to .10 pN, filling the flow cell with a

solution containing the condensing agents, and then decreasing the force at

�0.1 pN/minute until condensation was observed. Bead positions in each

frame were calculated from the centroid of intensity after background sub-

traction.

Osmotic stress

The method for direct force measurement by osmotic stress has been de-

scribed in detail by Parsegian et al. (18). In brief, condensed DNA arrays are

equilibrated against a bathing polymer solution, typically polyethylene

glycol (PEG) of known osmotic pressure that is excluded from the DNA

phase. Water and salts are free to exchange between the PEG and condensed

DNA phases. After equilibrium is achieved, the osmotic pressures in both the

polymer and macromolecular phases are the same, as necessarily are the

chemical potentials of all permeating species. The interhelical spacing can be

determined as a function of the applied PEG stress by Bragg scattering of

x-rays.

Spermidine, spermine, sp61, and Co(NH3)6Cl3-precipitated DNA were

prepared by slowly adding the multivalent ion in steps of ;0.2 mM to a 1 mg/

ml (;3 mM DNA-phosphate) DNA solution in 10 mM TrisCl (pH 7.5) and

mixing to a final nominal concentration of ;2 mM. Condensed DNA sam-

ples for the diamine putrescine were prepared by ethanol precipitating DNA

from NaAcetate solutions. DNA pellets (;0.2–0.3 mg) were equilibrated

against ;1 ml PEG solutions containing varying concentrations of the

condensing ions in 10 mM TrisCl (pH 7.5) at room temperature for ;2 weeks

with two changes of PEG solution and with occasional mixing. Osmotic

pressures of the PEG solutions were measured directly using a Vapro Vapor

Pressure Osmometer (model 5520, Wescor, Logan, UT). The x-ray scattering

apparatus and data reduction are described in Hultgren and Rau (19).

RESULTS

Magnetic tweezers, DG

The total free energy of DNA condensation per unit length

can be measured by observing condensation of stretched

single-molecules of DNA (20–22). In the presence of a suf-

ficient concentration of multivalent cations, the ion-mediated

condensation forces between helices oppose the magnetic

force acting to extend the molecule. The energy balance

between the favorable (negative) free energy of condensation

and the work required to pull the magnetic bead against the

magnetic force defines a phase transition (20–22). Under

quasi-static equilibrium conditions (22), the collapse transi-

tion occurs when the total free energy is just less than zero,

i.e., when the applied force is equal to the condensation free

energy per unit length. An example of this measurement is

shown in Fig. 1. The condensation free energy per unit length

is determined simply as the force at which DNA transitions

from extended to condensed (‘‘condensation force’’). Here,

we combine measurements of the condensation forces for

a hexavalent spermidine analog, sp61, with previous mea-

FIGURE 1 Measuring a condensation force in Co(NH3)6Cl3. A single

l-DNA double helix is stretched between an immobilized bead (large bead

on the left) and a bead susceptible to a magnetic force pulling to the right.

Bathed in a solution containing the condensing agent, the DNA is initially

stretched by a force, f, that is larger than the free energy of condensation,

DG: The force is gradually decreased and the distance between the beads, x,

is monitored. Before condensation, the force-distance dependence is well

characterized by the worm-like chain model (dashed line). At a critical force,

f ;� DG; the bead-bead separation abruptly decreases. Within minutes,

condensation of DNA reaches completion, bringing the magnetic bead

nearly into contact with the fixed bead.
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surements on cobalt hexammine, spermidine, and spermine

(22).

As shown in Fig. 2, the condensation force depends

strongly on multivalent ion concentration, C. Each multiva-

lent cation exhibited a similar trend, rising from zero force at

low concentration, reaching a maximum at intermediate

concentration, and tending back toward 0 at high concen-

tration. This behavior was previously observed for spermi-

dine, spermine, cobalt hexammine, and protamine (22–24).

The concentration dependence indicates, via a Gibbs-Duhem

relationship, a difference in the number of bound multivalent

cations between the extended and condensed phases (22).

This contribution is proportional to df=dlnC and vanishes at

the concentration where the condensing force is maximal.

This condition was previously interpreted by Zhang and

Shklovskii as the concentration where the extended DNA is,

like the condensed DNA phase, electroneutral (25). Alter-

natively, the maximum condensation force could indicate the

concentration where the energy gained by release of lower

valent cation species balances the energy required to adsorb

multivalent cations (22,26,27). In either case, the free energy

measured at this concentration can be interpreted, in the

absence of ion binding effects, as the free energy gain for

bringing two helices with the appropriate number of adsorbed

counterions for the condensed state from very far apart down

to the equilibrium spacing, DG: We extract DG for each ion

by fitting a four-knot cubic spline (lines in Fig. 2) and ex-

tracting the peak value of the best-fit line. Table 1 lists DG in

units of thermal energy per basepair for cobalt hexammine,

spermidine, spermine, and a hexavalent spermidine analog,

sp61 (12.3 pN ¼ 1 kbT/bp, with 3.4 Å for the basepair rise).

Osmotic stress, DGrep

The repulsive contribution to the total condensation free

energy measured by magnetic tweezers can be calculated

from osmotic stress force curves (18). In osmotic stress, an

ordered array of condensed DNA helices is equilibrated

against a salt solution also containing a large sterically ex-

cluded polymer. The osmotic pressure exerted by the ex-

cluded polymer on the DNA phase acts to compact the DNA

helices until the intermolecular pressure between the helices

balances the solution osmotic pressure. A plot of the polymer

osmotic pressure, P; versus the intermolecular spacing be-

tween DNA helices measured by x-ray scattering, D, fur-

nishes the intermolecular pressure-distance relationship for

DNA under a particular set of solution conditions.

For DNA that is spontaneously condensed by multivalent

cations (Fig. 3: spermidine31, right triangles; spermine41,

down open triangles; a 16 charged alkyl hexamine, sp61, up
solid triangles; CoðNH3Þ31

6 ; solid circles), increasing os-

motic pressure compacts DNA past its equilibrium spacing

(indicated by arrows) to progressively smaller interhelical

spacings. Concomitantly, the measured pressures shift from

an equilibrium balance of attractions and repulsions to in-

creasing dominance by the shorter-range repulsions. This

allows the repulsive component of the total interaction to be

isolated from the high pressure limit of the osmotic stress

force curve. This can then be compared with the condensa-

tion free energy measured by magnetic tweezers by inte-

grating the repulsive intermolecular pressure up to the

equilibrium interhelical spacing to obtain a repulsive free

energy, DGrep:
Within the experimentally accessible range of osmotic

pressures, isolating the shorter-range repulsions from the

measured total pressure is nontrivial. In the past, we have

assumed that the curves reached a limiting exponential form

at the highest pressures (or equivalently, smallest spacings)

and extracted 1.4–1.6 Å decay lengths from high-pressure

data (10). However, the curves had not reached a limiting

behavior, so these values should be considered lower bounds.

Fitting the same data to a biexponential form appropriate for

either hydration forces or Debye-Hückel electrostatics gave a

larger, 2.25 Å decay length for the repulsive component (10).

We have fit each curve in Fig. 3 similarly, using an arbitrary

FIGURE 2 Concentration dependence of the condensation force for a

hexavalent spermidine analog, sp61 (:) and for the previously measured

spermidine (<) and spermine (,) (22). For each cation, the condensing

force rises from 0 at low concentration, reaches a peak at intermediate

concentration, and then decreases at high concentration. We fit each curve to

a four-knot cubic spline (lines) and extracted DG from the peak value of the

best-fit line. At the peak, the free energy is insensitive to condensing ion

concentration and can be interpreted without the complicating energetic

contributions for ion binding. Data for Co(NH3)6Cl3 showed a similar

inverted ‘‘U’’ shape (22) and a peak value was similarly extracted.

TABLE 1 Combining osmotic stress and magnetic

tweezers measurements

Deq, Å DG; kbT/bp DGrep; kbT/bp DGatt=DGrep

Co(NH3)6Cl3 27.75 6 0.1 �0.21 6 0.02 0.17 6 0.01 2.2 6 0.2

Spermidine 29.7 6 0.1 �0.20 6 0.02 0.13 6 0.02 2.5 6 0.3

Spermine 28.15 6 0.1 �0.33 6 0.03 0.29 6 0.03 2.1 6 0.2

sp61 27.65 6 0.1 �0.38 6 0.04 0.39 6 0.07 2.0 6 0.2

For each condensing ion, the net free energy, DG; measured by magnetic

tweezers and the repulsive component of the free energy, DGrep; measured

by osmotic stress, are similar in magnitude. Subtracting the repulsive

component from the total gives an attractive free energy that is about twice

the repulsive free energy.

Attractive Forces between DNA 4777
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polynomial form for the attraction and an exponential term

for the repulsion (Fig. 1 in the Supplementary Materials,

Data S1). We again find that all of the repulsive components

of the intermolecular pressure share similar 2.2–2.4 Å charac-

teristic decay lengths. The osmotic stress curves and the fitted

decay lengths are insensitive to multivalent cation concentra-

tion, consistent with direct spectrophotometric measurements

of cation concentrations in the condensed phase (22), modest

electrophoretic mobilities of DNA condensates (24), and

modeling of DNA-multivalent cation interactions (22,25), all

of which suggest that multivalent cation condensed DNA

phases maintain a nearly neutralizing amount of bound multi-

valent cations across a broad range of electrolyte conditions and

osmotic pressures.

Comparing the osmotic stress curves for the condensing

polyamines (right solid triangles, down open triangles, up
solid triangles) with the curve for the 12 charged diamine

putrescine (left open triangle) that does not condense DNA

gives a purely empirical correlate for a 2.2–2.4 Å exponen-

tially decaying repulsion obtained by curve fitting. Inspecting

the data at high pressures, each of the condensing polyamine

curves appears to converge to the putrescine curve, so that, at

the highest experimentally accessible pressure, the inter-

helical spacings for all of the polyamines are identical to

within 0.12 Å. That is, the 2.4 Å single exponential (line in

Fig. 3), directly observable for putrescine, appears to be

the underlying repulsive component for all the polyamines

measured. Of course, in the absence of data at higher pres-

sures, we cannot be certain that each of the polyamine curves

will continue at this limit indefinitely. However, it is com-

pelling that four different polyamines, starting from four

different equilibrium spacings, all reach essentially the same

interaxial spacing at the highest measured pressure. It

strongly suggests that putrescine represents the pure poly-

amine repulsion. Moreover, fits of each curve in Fig. 3 to an

exponential repulsion and an arbitrary polynomial form for

the attraction gave similar decay lengths of 2.2–2.4 Å (Fig.

1 in the Supplementary Material, Data S1) to the 2.4 Å decay

length for putrescine. Hence, within the experimental preci-

sion, all of the condensing agents exhibit a similar cation-

independent 2.2–2.4 Å exponentially decaying repulsion.

We use the 2.4 Å decay length exponential from the pu-

trescine data to describe the repulsive components of the

polyamine intermolecular pressures. We use the same curve

but with the exponential prefactor reduced by 60% for the

repulsive pressure between DNA in Co(NH3)6Cl3. Repulsive

free energies are calculated by integrating the exponentially

repulsive pressures for hexagonally arranged DNA helices

(28) to the equilibrium spacing (arrows in Fig. 3), Deq,

Prep ¼ Re
�D=lrep ; (1)

DGrep¼�
Z Deq

N

Prep

ffiffiffi
3
p

lDdD¼
ffiffiffi
3
p

llrepðDeq 1lrepÞPrep½Deq�;

(2)

where Prep is the purely repulsive component of the pressure,

R is the prefactor to the exponential repulsion, lrep ¼ 2.4 Å is

the decay length for the repulsive component, and l ¼ 3.4 Å

is the rise per basepair (Table 1). The uncertainty in DGrep

encompasses the range of free energies calculated from the

putrescine repulsion and the exponential repulsions obtained

by curve fitting.

Attractive interactions, DGatt ¼ DG � DGrep

As is apparent in Table 1, the measured free energies of

condensation and their repulsive components are similar in

magnitude but opposite in sign for each cation. The attractive

free energy, DGatt; equals the difference between the net, DG;
and repulsion, DGrep; and its magnitude is about twice the

repulsive free energy. More precisely, the measured values of

�DGatt=DGrep range from 2.1 to 2.5 and are systematically

;5–25% larger than 2 (Table 1).

The approximate ratio of 2 between attractive and repul-

sive free energies persists despite qualitative structural and

chemical differences between condensing ions and quanti-

tative differences in the stability and interhelical spacing of

the condensed DNA. The hexavalent sp61, for instance, is

twice the size and has twice the charge of the trivalent

spermidine31. The sp61-condensed DNA is 180% more

FIGURE 3 Intermolecular pressures between DNA measured by osmotic

stress (uncertainties in pressures and interhelical spacings are smaller than

symbols). In putrescine (9), interhelical pressures are purely repulsive and

fit a single 2.4 Å decaying exponential (line). All of the polyamine

measurements (triangles) converge to this same curve at high pressures,

indicating that the repulsive component of the intermolecular interaction is

the same for all. This 2.4 Å exponential is extrapolated to calculate the

repulsive component of the free energy for the polyamines. The high-

pressure limit is lower for Co(NH3)6Cl3 (d), so we use an exponential with

correspondingly smaller amplitude. Spermidine (<), spermine (,), sp61

(:; only 3 data points at high and low pressure), and Co(NH3)6Cl3 (d)

curve down toward a finite separation as P/0; indicating spontaneous

assembly and attractive forces between helices. Equilibrium interaxial

separations, Deq, corresponding to P ¼ 0; are indicated by arrows.
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stable and has an equilibrium interhelical spacing that is 2 Å

smaller than spermidine31-condensed DNA (see Table 1).

Yet their ratios of DGatt=DGrep differ by only 20%.

Co(NH3)6Cl3, a compact inorganic cation that is chemically

and structurally distinct from the polyamines, maintains the

same factor �DGatt=DGrep;2:

DISCUSSION

Assembly and recognition reactions of biomolecular com-

plexes involve a balance of attractive and repulsive interactions.

We combined single-molecule pulling with osmotic-stress

‘‘pushing’’ to separate the attractive and repulsive compo-

nents of the free energy of interaction in DNA condensation.

The general strategy should be useful with other complexes,

for instance, in determining the interactions that lead to

pathogenic protein aggregation.

Although there are nominal configurational differences

between coiled-single-molecule condensates and the parallel

macroscopic arrays observed under osmotic stress, both are

dominated by the intermolecular interactions between heli-

ces. On theoretical grounds, single molecule condensates

minimize surface and bending effects and, as a result, are

expected to assume the same local structure as parallel arrays

(29). Hud and Downing confirmed this view experimentally,

showing that the helical packing and interhelical spacing in

single-molecule CoðNH3Þ31
6 -DNA condensates (30) closely

match those in macroscopic condensed arrays (10). Gener-

ally, the total free energy of condensation also includes a loss

of DNA configurational entropy. However, the stretched DNA

in a magnetic tweezers experiment is already conformationally

restricted, so this contribution is negligible. Finally, our direct

measurement of the free energy for Co(NH3)6Cl3 condensed

single molecules, �0.21 kbT/bp, agrees with a previous esti-

mate, �0.17 kbT/bp, extrapolated from osmotic stress mea-

surements on macroscopic arrays (10).

Our results reveal two properties of condensed DNA in-

termolecular interactions that are invariant for all multivalent

cations examined. The first is that the repulsive component

of the intermolecular pressure decays exponentially with a

2.3 6 0.1 Å characteristic decay length. The second is that

the attractive component of the equilibrium free energy is

always about twice the repulsive component (�DGatt=DGrep;

2:3 6 0:2). These properties hold for all multivalent cations

measured, despite differences in their charge, structure, and

composition and despite differences in the equilibrium spac-

ing and energetics of the condensed DNA. A third property

was consistent for the polyamines, which all share a similar

alkyl amine1 monomer but range in length from 21 to 61.

DNA condensed by polyamines shared, not only the same

2.3 6 0.1 Å repulsive decay length, but also the same mag-

nitude of repulsions (i.e., identical coefficient, R in Eq. 1; see

high-pressure limit of Fig. 3). This uniformity is surprising

given the strong influence of polyamine length on the con-

densation free energy (see increasing DG for spermidine31

thru sp61 in Table 1). Uniformity in the repulsive interactions

means that differences between DNA condensed by different

polyamines are due solely to changes in the attractive com-

ponent of the intermolecular interaction. Apparently, the at-

tractive component depends very strongly on the length of the

polyamine and possibly its arrangement within the condensate,

whereas the repulsion does not. These three new empirical

constraints should be useful in the development of mechanistic

theories for DNA-DNA interactions in the presence of multi-

valent cations. We present a preliminary evaluation of current

theories below.

The condensation of DNA in the presence of counterions

might suggest neutralization of electrostatic repulsions and

subsequent aggregation by van der Waals forces, as in the

Derjaguin-Landau-Verway-Overbeek theory of colloidal floc-

culation. However, attractions between counterion condensed

DNA are at least an order of magnitude larger than expected for

van der Waals forces (10). Similarly, ‘‘hydrophobic’’ interac-

tions or hydrogen bonding might provide driving forces for

aggregation. However, the highly charged DNA surface is

clearly not ‘‘hydrophobic’’ and the 7–12 Å water-filled space

between condensed DNA helices eliminates the possibility of

short-range hydrogen bonding. Hence, DNA condensation is

commonly attributed to electrostatic attractions.

The predictions of electrostatic theories depend on the

approximations used. Mean-field theories, such as the Poisson-

Boltzmann equation, that neglect correlations between ions

always predict repulsion between like-charged homogeneous

surfaces and therefore cannot account for DNA condensation

(31). At the other limit, if counterion correlations are very

strong, counterions on like-charge apposing surfaces can

interlock in a complementary fashion and net attractions re-

sult (4,5). Although DNA does not meet the formal criterion

for this ‘‘strong coupling’’ limit, correlation-induced attrac-

tions are apparently still possible (32,33). Detailed Monte

Carlo calculations, using parameters described as similar to

DNA in CoðNH3Þ13
6 or spermidine13, predict attractions

that, within 9% error, can be described by an exponential

with a decay length equal to the spatial period between

neutralizing counterions (33). This decay length is ;2.8 Å

for CoðNH3Þ13
6 or spermidine13 and increases with the

square root of the ion charge for spermine41 and sp61.

We use these decay lengths to compare the predictions of

counterion-correlation theory to our experimental results. For

exponentially decaying attractive and repulsive intermolec-

ular pressures (e.g., Eq. 2), the ratio of attractive and repul-

sive free energies at force balance equilibrium (Prep ¼ Patt)

are approximately equal to the ratio of decay lengths,

�DGatt

DGrep

¼ lattðDeq 1lattÞ
lrepðDeq 1lrepÞ

ffi latt

lrep

: (3)

Because decay lengths for counterion-correlation repul-

sions have not been predicted, we use the lrep ¼ 2:3 6 0:1 Å

from our osmotic stress measurements for the repulsive decay
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length. Using the predictions of current counterion-correla-

tion theory for latt and the exact form of Eq. 3, we obtain

predicted �DGatt=DGrep ranging from 1.2 for spermidine or

cobalt hexammine to 1.8 for sp61. Differences between the

predicted and measured �DGatt=DGrep are larger than the

uncertainties in our measurements, indicating that the current

formulations for counterion-correlation attractions are in-

consistent with the experimental data. Perhaps further elab-

orations of counterion-correlation theory that include

additional effects, such as ion excluded-volume (32,34), the

spatial patterning of charge on DNA, water structuring, or

added electrolyte, can resolve this discrepancy and bring

these theories into accord with experiments.

Alternatively, Kornyshev and Leikin have emphasized the

role of helical structure in DNA-DNA interactions (6–8).

Their formalism shows that the helical structure of DNA can

introduce an additional length scale not present when DNA is

modeled as a homogeneous rod (7). For the predominant

helical period of DNA (34 Å helical pitch divided by 2p), this

yields a decay length that is always smaller than 5.4 Å. As

with the homogeneous-charged rod, electrostatic attractions

cannot result unless counterions are complementary. How-

ever, if a line of counterions is assumed bound in the major

groove, electrostatic attractions with uniform decay length

,5.4 Å are possible. Kornyshev and Leikin have also in-

cluded an image repulsion for the interaction of phosphates

and counterions with the low dielectric cores of DNA. This

gives a short-range repulsion with a decay length equal to half

the decay length for the attraction, or ,2.7 Å. Using these

decay lengths and Eq. 3, Kornyshev’s and Leikin’s formal-

ism for helical molecules predicts a nearly constant ratio of

attractive to repulsive free energy of �DGatt=DGrep;2:2;
consistent with our experimental observations.

We have previously argued that attractions between

counterion-condensed DNA are caused by the structuring of

water between DNA helices (9,10). The dominating effect

that these hydration forces can have on supramolecular or-

ganization was first recognized from a common 3.5–4 Å

exponentially repulsive force measured between charged,

zwitterionic, and uncharged molecules in water (19,35–39).

We hypothesized that repulsion resulted from the disruption

of structured water between molecules and that the consis-

tent, 3.5–4 Å decay lengths for the measured interactions

reflected the ;4 Å correlation length in liquid water (12).

Hydration attractions are also theoretically possible if ap-

posing molecular surfaces mutually reinforce the preferred

water structure rather than disrupt it. The order-parameter

formalism for hydration forces (11) predicts a ;4 Å decay

length for attractions and ;2 Å image repulsion due to the

steric exclusion of the hydration ‘‘atmosphere’’ of one

counterion-decorated DNA by an apposing helix (37,40).

Using these decay lengths and Eq. 3, the order-parameter

formalism for hydration forces predicts a ratio of attractive to

repulsive free energy of �DGatt=DGrep;2:1; consistent with

our experimental observations.

The consistency between our experimental results and

both hydration forces and electrostatics in Kornyshev’s and

Leikin’s theory of interacting helices is a consequence of the

constant ratio of 2 that both theories predict between the

decay length for attractive and repulsive interactions

(latt=lrep ¼ 2). This can easily be seen from Eq. 3, which

shows that, for any theory positing exponentially decaying

attractive pressures, the ratio of attractive and repulsive free

energies at equilibrium is essentially equal to the ratio of the

decay lengths. In this case, our two experimental constraints,

lrep ¼ 2:3 6 0:1 Å and DGatt=DGrep ¼ 2:3 6 0:2 indicate a

characteristic decay length for condensed DNA attractions of

latt ¼ 4:8 6 0:5 Å. This scheme leads to an equation for the

total pressure between helices,

P¼�Ae
�D=l

1Re
�2D=l

; (4)

with l ; 4:6 Å and A and R are phenomenological parameters

describing the strength of attractions and repulsions, respec-

tively. As an additional critical test of this form, we obtained

the coefficient R from osmotic stress measurements, set the

coefficient A such that the total pressure is zero at the mea-

sured equilibrium spacing, and integrated Eq. 2 to obtain

predicted equilibrium free energies. Neither coefficient was

fit to the magnetic tweezers data. Predicted (solid and dashed
line) free energies and magnetic tweezers measurements

(symbols), shown in Fig. 4, closely coincide with a mean

discrepancy of 6%, confirming that Eq. 4 accurately de-

scribes the intermolecular forces between condensed DNA.

In Fig. 4, the homologous series of 13, 14, and 16 poly-

amines (triangles) are seen to fall on a single line. This

exponential relationship between the condensation free en-

ergy and equilibrium interhelical spacing is predicted only if

each ion shares a common underlying repulsion (i.e., the

same value for the coefficient R in Eq. 4). This is consistent

with our observation that all of the polyamine osmotic stress

curves converge to a common limit at high pressure and,

likewise, indicates a common repulsion (i.e., the same value R).

Although both hydration forces and electrostatics in

Kornyshev’s and Leikin’s theory of interacting helices are

consistent with our results, neither theory could be said to

predict the measured forces. The order-parameter theory for

hydration forces does not include a prediction for the strength

of water structuring (A and R in Eq. 4) and hence, does not

predict the magnitude of forces. Similarly, the forces pre-

dicted by the electrostatic theory of Kornyshev and Leikin

depend on the unknown number and location of counterions

that are assumed ‘‘bound’’. In contrast, counterion-correla-

tion electrostatic theories have made reasonable predictions

for the magnitude of DNA-DNA attractions (34,41,42),

though the predicted decay lengths appear inconsistent with

our measurements. Counterion-correlation electrostatic the-

ories have received a great deal of attention recently because

they can rationalize the experimentally observed resolu-

bilization of DNA condensates at high multivalent ion
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concentrations (42) and the observed promotion of DNA

condensation in aqueous mixtures of some nonpolar solutes,

such as alcohols (43). However, the resolubilization of DNA

condensates becomes less mysterious when it is recognized

that it occurs near the solubility limit for the multivalent

cation salt. The formation of lower-valent anion-associated

forms of the multivalent cation that occurs near the solubility

limit increases the energetic cost for neutralizing DNA. This

increased energetic cost provides a simple mechanism for

resolubilization, regardless of the forces that promote DNA

condensation (22,26,27). Likewise, electrostatic interpreta-

tions of the action of neutral solutes in terms of a change in

dielectric constant are only applicable within certain chemi-

cally homologous series. The incremental action of alcohols,

for instance, orders nicely according to the dielectric constant

of the solution (43). Glycerol, on the other hand, has a di-

electric constant about half that of water but addition of

glycerol to spermidine-DNA solution has no apparent effect

on DNA condensation (19,44). The action of neutral solutes

correlates more broadly with their extent of exclusion from

DNA than with the solution dielectric constant (19), raising

doubt that the dielectric constant is causal. In our view, the

question of a mechanism for DNA condensation remains

open. The new constraints introduced by our measurements

should be useful in further development of all of these the-

ories.

SUPPLEMENTARY MATERIAL
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article, visit www.biophysj.org.
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