282 research outputs found

    Chemical structures and theoretical models of lean premixed atmospheric-pressure propene/O2/N2 flames

    Get PDF
    To better understand the chemistry involved in the lean-fuel combustion, the chemical structure of lean premixed propene-oxygen-nitrogen flames stabilized on a flat-flame burner at atmospheric pressure was determined experimentally. The species mole fraction profiles were also computed by the Premix code and three detailed reaction mechanisms. A very good agreement was observed for the main properties: reactants consumption, final products (CO2, H2O) and the main intermediates: CO and H2. Only a general agreement is also observed between predicted and measured mole fraction profiles for minor intermediates. Marked differences occurred in the prediction of active intermediate species present in small concentrations. Pathways analyses were performed to identify the origins of these discrepancies. It was shown that the same reactions were involved in the three mechanisms to describe the consumption of propene, but with marked differences in their importance. C2H5, C2H4, and C3H5 are the main species formed in the first step and their consumption increases the differences between the mechanisms either by the use of different kinetics data for common reactions or by differences in the nature of the consumption reactions. KEY WORDS: Flame structure, Lean flame, Propene, Combustion mechanisms Bull. Chem. Soc. Ethiop. 2012, 26(2), 211-226.DOI: http://dx.doi.org/10.4314/bcse.v26i2.

    Formation of carbonyl compounds in lean premixed atmospheric-pressure Ethylene/O2/N2 flames

    Get PDF
    Motivated by a better understanding of lean-fuel combustion, the present study has determined experimentally the chemical structure of four lean ethylene-oxygen-nitrogen flames stabilized on the flat-flame burner at atmospheric pressure (φ = 0.47, 0.508, 0.693 and 0.81). Species mole fraction profiles were also computed by the Premix code (Chemkin II version) and three detailed reaction mechanisms .A very good agreement was observed between the main flame properties: reactants consumption, final products (CO2, H2O), main intermediates, and other hydrocarbons in small concentrations, and the modeling. A special care was brought to the examination of the relative importance of carbonyl compounds formation and consumption, mainly (CH2O and CH3CHO). Pathway analyses were performed to identify the formation from the direct consumption of ethylene through the C2H3 and CH2HCO. Sensitivity analyses were also performed in order to delineate the most sensitive reaction on the formation and consumption of these two carbonyl compounds.Keywords: Flame structure, lean flames, ethylene, carbonyl compounds, combustion, mechanisms

    IL-18 Does not Increase Allergic Airway Disease in Mice When Produced by BCG

    Get PDF
    Whilst BCG inhibits allergic airway responses in murine models, IL-18 has adversary effects depending on its environment. We therefore constructed a BCG strain producing murine IL-18 (BCG-IL-18) and evaluated its efficiency to prevent an asthma-like reaction in mice. BALB/cByJ mice were sensitized (day (D) 1 and D10) by intraperitoneal injection of ovalbumin (OVA)-alum and primary (D20–22) and secondary (D62, 63) challenged with OVA aerosols. BCG or BCG-IL-18 were intraperitonealy administered 1 hour before each immunization (D1 and D10). BCG-IL-18 and BCG were shown to similarly inhibit the development of AHR, mucus production, eosinophil influx, and local Th2 cytokine production in BAL, both after the primary and secondary challenge. These data show that IL-18 did not increase allergic airway responses in the context of the mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the development of local Th2 responses and therefore inhibit allergen-induced airway responses even after restimulation

    Sucrose and starch intake contribute to reduced alveolar bone height in a rodent model of naturally occurring periodontitis

    Get PDF
    Funding: This research project was funded in part by the Strategic Research Excellence Initiative 2020 (SREI2020), University of Sydney to JE and the University of Sydney HMR + Implementation Funding Grant to VC, DLC and SS.Peer reviewedPublisher PD

    Phylogenomic exploration of the relationships between strains of Mycobacterium avium subspecies paratuberculosis.

    Get PDF
    BACKGROUND: Mycobacterium avium subspecies paratuberculosis (Map) is an infectious enteric pathogen that causes Johne's disease in livestock. Determining genetic diversity is prerequisite to understanding the epidemiology and biology of Map. We performed the first whole genome sequencing (WGS) of 141 global Map isolates that encompass the main molecular strain types currently reported. We investigated the phylogeny of the Map strains, the diversity of the genome and the limitations of commonly used genotyping methods. RESULTS: Single nucleotide polymorphism (SNP) and phylogenetic analyses confirmed two major lineages concordant with the former Type S and Type C designations. The Type I and Type III strain groups are subtypes of Type S, and Type B strains are a subtype of Type C and not restricted to Bison species. We found that the genome-wide SNPs detected provided greater resolution between isolates than currently employed genotyping methods. Furthermore, the SNP used for IS1311 typing is not informative, as it is likely to have occurred after Type S and C strains diverged and does not assign all strains to the correct lineage. Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR) differentiates Type S from Type C but provides limited resolution between isolates within these lineages and the polymorphisms detected do not necessarily accurately reflect the phylogenetic relationships between strains. WGS of passaged strains and coalescent analysis of the collection revealed a very high level of genetic stability, with the substitution rate estimated to be less than 0.5 SNPs per genome per year. CONCLUSIONS: This study clarifies the phylogenetic relationships between the previously described Map strain groups, and highlights the limitations of current genotyping techniques. Map isolates exhibit restricted genetic diversity and a substitution rate consistent with a monomorphic pathogen. WGS provides the ultimate level of resolution for differentiation between strains. However, WGS alone will not be sufficient for tracing and tracking Map infections, yet importantly it can provide a phylogenetic context for affirming epidemiological connections

    Occurrence of Mycobacterium avium subspecies paratuberculosis across host species and European countries with evidence for transmission between wildlife and domestic ruminants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium avium </it>subspecies <it>paratuberculosis </it>(<it>Map</it>) causes an infectious chronic enteritis (paratuberculosis or Johne's disease) principally of ruminants. The epidemiology of <it>Map </it>is poorly understood, particularly with respect to the role of wildlife reservoirs and the controversial issue of zoonotic potential (Crohn's disease). Genotypic discrimination of <it>Map </it>isolates is pivotal to descriptive epidemiology and resolving these issues. This study was undertaken to determine the genetic diversity of <it>Map</it>, enhance our understanding of the host range and distribution and assess the potential for interspecies transmission.</p> <p>Results</p> <p>164 <it>Map </it>isolates from seven European countries representing 19 different host species were genotyped by standardized IS<it>900 </it>- restriction fragment length polymorphism (IS<it>900</it>-RFLP), pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphisms (AFLP) and mycobacterial interspersed repeat unit-variable number tandem repeat (MIRU-VNTR) analyses. Six PstI and 17 BstEII IS<it>900</it>-RFLP, 31 multiplex [SnaBI-SpeI] PFGE profiles and 23 MIRU-VNTR profiles were detected. AFLP gave insufficient discrimination of isolates for meaningful genetic analysis. Point estimates for Simpson's index of diversity calculated for the individual typing techniques were in the range of 0.636 to 0.664 but a combination of all three methods increased the discriminating power to 0.879, sufficient for investigating transmission dynamics. Two predominant strain types were detected across Europe with all three typing techniques. Evidence for interspecies transmission between wildlife and domestic ruminants on the same property was demonstrated in four cases, between wildlife species on the same property in two cases and between different species of domestic livestock on one property.</p> <p>Conclusion</p> <p>The results of this study showed that it is necessary to use multiple genotyping techniques targeting different sources of genetic variation to obtain the level of discrimination necessary to investigate transmission dynamics and trace the source of <it>Map </it>infections. Furthermore, the combination of genotyping techniques may depend on the geographical location of the population to be tested. Identical genotypes were obtained from <it>Map </it>isolated from different host species co-habiting on the same property strongly suggesting that interspecies transmission occurs. Interspecies transmission of <it>Map </it>between wildlife species and domestic livestock on the same property provides further evidence to support a role for wildlife reservoirs of infection.</p

    Hypersensitivity Pneumonitis-like Granulomatous Lung Disease with Nontuberculous Mycobacteria from Exposure to Hot Water Aerosols

    Get PDF
    OBJECTIVE: Human activities associated with aerosol-generating hot water sources are increasingly popular. Recently, a hypersensitivity pneumonitis (HP)-like granulomatous lung disease, with non-tuberculous mycobacteria from exposure to hot water aerosols from hot tubs/spas, showers, and indoor swimming pools, has been described in immunocompetent individuals (also called “hot tub lung”). Our objective in this study was to examine four additional cases of hot tub lung and compare these cases with others reported in the English print literature on this disease. DATA SOURCES AND EXTRACTION: We retrospectively reviewed all cases (n = 4) of presumptively diagnosed hot tub lung in immunocompetent individuals at the various physician practices in Springfield, Illinois, during 2001–2005. In addition, we searched MEDLINE for cases of hot tub lung described in the literature. DATA SYNTHESIS: We summarized the clinical presentation and investigations of four presumptive cases and reviewed previously reported cases of hot tub lung. CONCLUSIONS: There is a debate in the literature whether hot tub lung is an HP or a direct infection of the lung by nontuberculous mycobacteria. Primary prevention of this disease relies on ventilation and good use practices. Secondary prevention of this disease requires education of both the general public and clinicians to allow for the early diagnosis of this disease

    An experimental and kinetic modelling study of the oxidation of the four isomers of butanol

    Full text link
    Butanol, an alcohol which can be produced from biomass sources, has received recent interest as an alternative to gasoline for use in spark ignition engines and as a possible blending compound with fossil diesel or biodiesel. Therefore, the autoignition of the four isomers of butanol (1-butanol, 2-butanol, iso-butanol, and tert-butanol) has been experimentally studied at high temperatures in a shock tube and a kinetic mechanism for description of their high-temperature oxidation has been developed. Ignition delay times for butanol/oxygen/argon mixtures have been measured behind reflected shock waves at temperatures and pressures ranging from approximately 1200 to 1800 K and 1 to 4 bar. Electronically excited OH emission and pressure measurements were used to determine ignition delay times. A detailed kinetic mechanism has been developed to describe the oxidation of the butanol isomers and validated by comparison to the shock tube measurements. Reaction flux and sensitivity analysis indicate that the consumption of 1 butanol and iso-butanol, the most reactive isomers, takes place primarily by H-atom abstraction resulting in the formation of radicals, the decomposition of which yields highly reactive branching agents, H-atoms and OH radicals. Conversely, the consumption of tert butanol and 2-butanol, the least reactive isomers, takes place primarily via dehydration, resulting in the formation of alkenes, which lead to resonance stabilized radicals with very low reactivity. To our knowledge, the ignition delay measurements and oxidation mechanism presented here for 2-butanol, iso-butanol, and tert butanol are the first of their kind.

    Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution

    Get PDF
    Dietary protein dilution, where protein is reduced and replaced by other nutrient sources without caloric restriction, promotes metabolic health via the hepatokine Fgf21. Here, the authors show that essential amino acids threonine and tryptophan are necessary and sufficient to induce these effects
    corecore