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ABSTRACT 
 

Motivated by a better understanding of lean-fuel combustion, the present study has determined 
experimentally the chemical structure of four lean ethylene-oxygen-nitrogen flames stabilized on the flat-flame 
burner at atmospheric pressure (φ = 0.47, 0.508, 0.693  and 0.81). Species mole fraction profiles were also 
computed by the Premix code (Chemkin II version) and three detailed reaction mechanisms .A very good 
agreement was observed between the main flame properties: reactants consumption, final products (CO2, H2O), 
main intermediates, and other hydrocarbons in small concentrations, and the modeling. A special care was 
brought to the examination of the relative importance of carbonyl compounds formation and consumption, 
mainly (CH2O and CH3CHO). Pathway analyses were performed to identify the formation from the direct 
consumption of ethylene through the C2H3 and CH2HCO. Sensitivity analyses were also performed in order to 
delineate the most sensitive reaction on the formation and consumption of these two carbonyl compounds. 
© 2014 International Formulae Group. All rights reserved. 
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 INTRODUCTION 

Recent years have seen a gaining 
interest in lean combustion because it offers 
the potential of enhanced fuel economy and 
reduced pollutants formation (CO, soot, and 
NOx) and especially the reduction of CO2 
emissions. This last species will be crucial in 
efforts to mitigate global warming due to 
green house effects. However, lean flames are 
subjected to two issues:  instabilities that can 
eventually lead to extinction and the 
formation of new pollutants (oxygenated 
products of hydrocarbons, such as carbonyl 
compounds, and in particular aldehydes). 

Oxygenated compounds are in 
important intermediate product in 
hydrocarbons oxidation and alcohol (Warnatz 
et al., 1984). Their emissions are harmful to 
the environment as well as to human health 
and they should be reduced. In the last decade, 
formaldehyde and acetaldehyde have been 
studied in several experimental setups for 
various temperature and pressure conditions: 
for CH2O, in static reactors (Hay and Hessam, 
1971), flow reactors (Vardanyan et al., 1971 
and 1974; Hochgreb et al., 1990; Glarborg et 
al., 2003), shock tubes (Drummond, 1971; 
Dean et al., 1979, 1980; Hidaka et al., 1993a, 
1993b; Eitener et al., 1998; Friedrichs et al., 
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2004) and flames (Oldenhove et al., 1986; 
Kaiser et al., 1991; Corr et al., 1992;  Dagaud 
et al., 1994; Curran et al., 1998; Zervas et al., 
1999, 2001, 2002, 2005; Dias et al., 2012); 
and for CH3CHO, in static reactors (Kaiser et 
al., 1986), flow reactors (Colket et al., 1975, 
1977), shock tubes (Dagaut et al., 1995; Won 
et al., 2000; Yasunaga et al., 2007) and flames 
(Leplat and Vandooren, 2010). All these past 
studies have allowed the determination of the 
consumption pathways of such carbonyl 
compounds. 

All these past studies have allowed the 
determination of the consumption pathways of 
such carbonyl compounds. The study of the 
oxygenated pollutants, in particular, the 
carbonyl compounds formation in the simple 
flames is a step for understanding of their 
formation and emission in exhaust gas or 
industrial burners.  

The objective of the present work is to 
identify the pathways of formation and 
consumption of these compounds in the 
combustion of a simple fuel, ethylene (C2H4). 
As a key intermediate in the oxidation of 
higher alkanes, ethylene plays an important 
role in the combustion mechanism of most 
practical fuels as well as in atmospheric 
chemistry. In rich conditions, ethylene is a 
precursor of aromatics and soot particles 
through the formation of acetylene (C2H2). 
Several researchers have carried out studies to 
improve the knowledge of ethylene oxidation. 
Recent measurements of the laminar flame 
velocity of ethylene-air mixtures have been 
reported (Jomaas et al., 2005). Tubular and jet 
stirred reactors have been used to derive 
analytical data at intermediate temperatures 
(Westbrook et al., 1982, 1988; Dagaut et al., 
1988; Marivov et al., 1995). Ignition delays 
measured in shock tubes have been compiled 
recently by Varatharjan and Williams (2002). 

The chemical structure of ethylene 
flames has been studied at low pressure by 
using molecular beam-mass spectrometer 
technique (Peeters et al., 1973; Law et al., 
2005; Musik et al., 2000) and atmospheric 
pressure (Harris et al., 1986; Cool et al., 
1988). The latter aimed at identifying 

aromatics and soot precursors and concerned 
essentially rich flames.  

Detailed combustion mechanisms have 
been developed to reproduce the available 
experimental data on ethylene oxidation. They 
have been progressively improved by a better 
description of the various ethylene attack 
reactions by H, O and OH (Dagaut et al., 
1988; Wilk et al., 1990; Marinov et al., 1995; 
Varatharjan et al., 2002). Specific studies on 
the kinetics of C2H3 + O2 reactions 
(Westbrook et al., 1982; Bozzelli., 1993) have 
been also beneficial (Hidaka et al., 1999; 
Lindstedt et al., 2000). 

With the development of premixed lean 
combustion to reduce soot and NOX 
production, there is a need for data obtained in 
lean atmospheric flames. Indeed, few data of 
the ethylene oxidation are up to now 
available. Bhargava and Westmoreland (1998) 
studied the laminar flat C2H4/O2/Ar flame at 
the equivalence ratio of 0.75, at low pressure 
(40 mbar) to understand the ethylene 
oxidation. Later, Law et al. (2005) analysed a 
fuel-lean ethylene flat flame (C2H4/O2/Ar, φ = 
0.70, 40 mbar) enriched with allene (C3H4) to 
observe the influence of such hydrocarbons on 
the soot precursors formation. They did not 
focus their work on the ethylene oxidation but 
rather on the hydrocarbons formation due to 
the presence of C3H4. These two experimental 
works have been performed with argon as 
thinner but not nitrogen, and they worked at 
low pressure. Delfau et al. (2007) studied the 
laminar flat flame C2H4/O2/N2 at the 
equivalence ratios of 0.5 and 0.7, at 
atmospheric pressure, to understand the 
ethylene oxidation in lean conditions. Their 
objective was to check the ability of four 
detailed reaction mechanisms (Konnov, 
UCSD, UDEL and Dagaut) to correctly 
predict the temperature and species mole 
fraction profiles. Lopez et al. (2009) recently 
studied ethylene oxidation, through the 
analysis of C2H4/O2/N2 in a flow reactor, at 
high pressure (60 bar), for equivalence ratios 
ranging from 0.05 to 5. The objective was to 
develop and validate a kinetic model at high 
pressure instead of low pressure.  
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None of these previous works focused 
on the formation of oxygenated species for 
lean ethylene mixtures. In this work, the 
structures of four ethylene-oxygen-nitrogen 
flames with equivalence ratios of 0.47, 0.508, 
0.693 and 0.81, diluted by nitrogen, were 
studied experimentally at atmospheric 
pressure, to observe the formation of the 
carbonyl compounds with nitrogen presence.   

 A special care was brought to the 
examination of the relative importance of 
various carbonyl compounds formation  
pathways, and the sensitivity analyses in order 
to delineate the most sensitive reaction on the 
formation and consumption of these two 
carbonyl compounds. 

 
MATERIALS AND METHODS 

The five ethylene-oxygen-nitrogen 
flames were stabilized on a flat-flame burner 
at atmospheric pressure. The upper part of the 
burner was made of a brass disk with small 
holes (1.0 mm diameter) drilled on a 4.0-cm-
diametr circular area. Details have been more 
completely described elsewhere (Biet et al., 
2005). 

Table1 lists the initial conditions for the 
five flames studied, in term of parameters 
needed for simulations with the Premix code. 
The N2/O2 ratios were adjusted in order to 
improve the stability of leanest flames or to 
maintain a minimum distance between the 
flame front and burner surface for the richest 
ones. 

Gas samples were taken along the 
symmetry axis of the flame by a quartz 
microprobe, mounted on a micrometer stage 
for vertical adjustment of the probe position 
relative to the burner surface. The probe was 
constructed from a 0.5-cm-diameter quartz 
tube drawn to a cone at the end. A hole (0.1 
mm diameter) was drilled at the tip of this 
cone. 

Gaseous samples were withdrawn from 
the flame through the probe and either directly 
injected into a gas chromatograph or stored in 
Pyrex sample flasks at a pressure limited to 
about 4 kPa to quench the chemical reactions 
within the hot tip of the probe. 

Gaseous samples withdrawn from 
flame were analyzed either by gas 
chromatograph (GC) or by Fourier transform 
infrared spectroscopy (FTIR). For GC 
analyses, the gaseous samples where stored in 
Pyrex flasks at low pressure (2.0 kPa 
maximum) and compressed by a mechanical 
piston up to 53 kPa (Vovelle et al., 1971) prior 
injection into the chromatograph. This 
compression greatly enhances the detection 
limit which was estimated to be about 1 ppm. 
Helium was used as carrier gas for all species 
analyses, except H2 which was measured with 
nitrogen to enhance the detector sensitivity. 

Gaseous samples were collected 
directly in the FTIR cell up to 3.3 kPa. 
Species analyzed by GC were CH4, C2H4, 
C2H2, C2H6, C3H6, C3H8, CO, CO2, CH3CHO, 
H2, O2, and N2, CH2O, H2O, CO, and CO2 
were measured by FTIR. 

Species calibration was performed by 
using a gaseous mixture of known 
composition. The accuracy was estimated to 
be ±5% for permanent gases and C1 and C2 
hydrocarbons, ±10% for C3H6 and ±20% for 
CH2O and CH3CHO. 

FTIR analyses were performed with the 
cell filled by the sampled gas up to 3.33 kPA. 
The selected spectral windows were 2118.3-
2128.8 cm-1 for CO, 2379.3-2381.2 cm-1 for 
CO2, 1716.6-1719.2 cm-1 for H2O, and 
1744.1-1746.7 cm-1 for CH2O. For the latter, 
the signal had to be corrected for a 
contribution from H2O. 

Temperature profiles were measured by 
using a Pt/Pt-10%Rh thermocouple (Biet et 
al., 2003), made of 50 µm-diameter wires 
tightened parallel to the burner surface and 
coated with a BeO-Y2O3 deposit to reduce 
catalytic effects (Kent, 1970). Radiation losses 
were corrected using the classical electrical 
compensation technique (Bonne et al., 1960). 
The temperature profiles measured in the five 
flames with this new thermocouple have been 
plotted on Figure1. Based on measurement 
reproducibility the accuracy was estimated to 
5%. Changes in the N2/O2 ratio, aimed at 
improving the flames stability, limit the 
variation of the maximum temperature to less 
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than 200 K when the equivalence ratio was 
decreased from 0.812 to 0.471. 
 
Modelling 

The lean flames structures were 
computed by using the Chemkin II (Kee et al., 
1985) and Premix (Kee et al., 1980) code. 
Three detailed combustion mechanisms 
currently available on Web sites have been 
used to compute the species mole fraction 
profiles. 

UDEL (Qin et al., 2000) mechanism is 
based upon addition of reactions for C3 to C6 
species to the GRI-MECH mechanism (Smith 
et al., 1999). It includes 70 species and 455 
reversible reactions. 

The mechanism developed by 
(Konnov, 2000) is more detailed. In its 
original version, it contains 127 species: 
CXHYOZ from C0 to C6 and nitrogenous 
intermediates. These species are involved in 
1158 reversible reactions and 49 nonreversible 
reactions. In this work, the N-species 
subsystem was removed so that the number of 
species was reduced to 93 and the number of 
reactions to 730 reversible and 47 no 
reversible. 

The third mechanism has been 
developed by the Combustion Division of the 
Center for Energy Research at the University 
of California, San Diego (UCSD) with the 
objective to describe phenomena relevant to 
flame conditions with the number of reactions 
and species kept to minimum. The 2002 
version (20021001) has been used in this 
work. It contains 39 species (up to C3) 
involved in 179 reactions (167 reversible and 
6 reactions with kinetic parameters given for 
the forward and reverse reactions). 

Thermodynamic and transport data 
have been taken without any change from the 
respective Web sites. 

Flame simulations were performed with 
the “BURN” option and experimental 
temperature profile introduced as input data. 
They were also conducted with the “FREE” 
option and use of the energy equation to 
derive the temperature profile. The latter 
procedure led to maximum temperatures only 

slightly higher than the measured ones, 
showing that due to care taken to stabilize 
each flame with an overall flow rate close to 
the maximum value compatible with flame 
stability, the five flames were almost 
adiabatic. 
 
RESULTS 

The experimental profiles were shifted 
to take into account the results of specific 
measurements performed with sampling probe 
and the thermocouple simultaneously present 
in the flame. These measurements showed that 
the probe did not influence the thermocouple 
signal when it was not connected to the 
vacuum pump. As soon as the pressure in the 
probe was reduced, to reproduce the sampling 
conditions, a marked reduction in the 
thermocouple signal was observed. An 
increase in the distance separating the probe 
and the thermocouple resulted in a progressive 
increase in the thermocouple signal up to the 
“unperturbed” value, measured with the probe 
located very far from the thermocouple. This 
maximum “perturbation distance” decreased 
when the pressure maintained in the probe 
was increased. It was also smaller at low 
temperature upstream the flame front. A shift 
position (z’) was derived from the position of 
the sampling probe (z) from the expression: 

z’= z-d ×
0max

0)(

TT

TzT

−
−

                        (1) 

    withT0: temperature at the burner surface, 
Tmax: maximum flame temperature and d: 
maximum shift distance. The latter increased 
when sampling pressure decreased and 
following values were used: 0.02 cm (GC1), 
0.05 cm (GC2) and 0.03 cm (FTIR). 
 
Flame temperature profiles 

The experimental temperature profile 
constitutes an essential parameter for 
interpretation of laminar flame data. In both 
flames, the temperature gradient and burned 
gas temperature are very well reproduced by 
Konnov, UCSD mechanisms as shown in 
Figure 1, here only the leanest flame is 
represented. With UDEL mechanism, the 
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slope is smaller and the profile is shifted away 
from the burner surface. The very good 
agreement observed for the maximum 
temperature shows that experimental heat 
losses were reduced to a minimum and the 
flames were stabilized in adiabatic conditions. 
Final flame temperatures are 1736 K, 1685 K, 
1901 K, 1765 K and 1760 K for the 
equivalence ratios of 0.47, 0.508, 0.70 and 
0.81, respectively. 
 
Reactants, main products and 
intermediates 

Figures 2, 3 and 4 compare the 
computed and experimental mole fraction 
profiles for the reactants, main products and 
intermediates: CO2, H2O, CO, H2. The down-
stream shift noticed with UDEL mechanism 
for the temperature leads to a similar shift in 
the species mole fraction profiles. With 
Konnov, UCSD, and UDEL mechanisms the 
computed profiles are almost identical and 
perfectly reproduce the experimental 
evolutions. The three mechanisms predict 
post-flame concentrations in very good 
agreement with the experiments. Such a good 
agreement must be expected since in lean 
flames, CO2 and H2O are the only final 
products corresponding to the complete 
conversion of carbon and hydrogen.  

In both flames, slight differences are 
observed in modelling of CO and H2, as 
shown in Figure 5 and 8. The three 
mechanisms give very close profiles, in very 
good agreement with experimental data for 
H2. Konnov’s mechanism predicts very well 
the H2 maximum concentration. Konnov and 
UCSD slightly overpredict CO, and UDEL 
mechanism predicts well the CO maximum 
concentration.   

 
Hydrocarbons 

Other intermediate species include 
hydrocarbons (Figures 9-12): propane, 
propene, ethane and acetylene, with 
experimental maximum concentration of 
1.0×10-4, 1.3×10-4, 2.0×10-4 , 3.0×10-4  for 
ethane and 2.1.0×10-4, 2.1×10-4, 5.3×10-4 , 
8.6.0×10-4 for acetylene , for the equivalence 
ratios of 0.47, 0.508, 0.693 and 0.812 
respectively (Figure 7), and methane, with 
experimental maximum concentration of 

2.1.0×10-4, 2.8.0×10-4, 6.0.0×10-4, 8.0×10-4, for 
the equivalence ratios of 0.47, 0.508, 0.693 
and 0.812 respectively (Figure 11). They are 
all consumed very fast so that their mole 
fraction profiles have a strong negative 
gradients after the maximum. A general 
agreement is observed between predicted and 
measured mole fraction profiles. These results 
are in accordance with those obtained by 
Delfau et al. (2007). 

The three mechanisms give very 
similar profiles for all hydrocarbons. A more 
detailed examination shows that the predicted 
maximum mole fraction is very close to the 
experimental value for ethane and acetylene 
and slightly overestimated by the models for 
propane, propene, and methane. UDEL 
mechanism underpredicts the mole fraction 
profiles of all hydrocarbons measured. 

Differences are observed for propane 
and propene, with UCSD mechanism 
predicting higher maximum value in propene 
than in propane. For ethane and acetylene, 
UCSD mechanism predicts very well the 
maximum mole fraction profiles. 
 
Carbonyl compounds 

Since they are potential pollutants of 
lean combustion, a special attention was 
brought to the analysis of these oxygenated 
species. Neither methanol nor acrolein could 
be detected, even in the leanest flame. These 
species should be analysed on the first gas 
chromatograph with a detection limit 
estimated to 100 ppm, so that it can be 
concluded that the maximum mole fraction is 
smaller than this value for both species. In the 
leanest flame, maximum mole fractions 
computed by the models were 1.09×10-4 
(Konnov), 2.56×10-5 (UDEL), and 1.43×10-5 
(UCSD) for methanol. Acrolein is involved 
only in the UDEL mechanism and its 
computed maximum mole fraction is   
3.55×10-7. Formaldehyde and acetaldehyde 
were present in the four flames studied. For 
the former, the maximum mole fraction is 
underpredicted by a factor of 2 by the UCSD 
mechanis, by a factor 3 by the UDEL 
mechanism whereas Konnov’s predicts 
maximum values in very good agreement with 
the experiments (Figures 13 and 14). 
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Table 1: Initial conditions of five C2H4-O2-N2 flames (pressure: 101 kPa). 

 
Mole fractions Flame1 Flame 2 Flame 3 Flame 4 Flame 5 
C2H4 0.0378 0.0364 0.0426 0.0390 0.0393 
O2 0.242 0.214 0.191 0.166 0.145 
N2 0.720 0.748 0.763 0.794 0.815 
Mass flux (gcm-2s-1) 0.0273 0.0218 0.0376 0.0252 0.0216 
Equivalence ratio 0.471 0.508 0.693 0.703 0.813 
N2/O2 2.9.75 3.495 3.998 4.783 5.624 

 
 
 

Table 2: Effective equivalence ratio of ethylene/O2/N2 flames. 
 

Exp/Model Φ 0,471 0,508 0,693 0,703 0,813 
Exp 1,09 0,97 1,03 1,08 1,11 
UDEL 1,01 1,01 1 1,01 1,03 
Konnov 0,99 0,99 1 1,01 1,03 
UCSD 1 1 1,01 1,01 1,01 

 
 
 

Table 3: Effective equivalence ratio for lean flames. 
 

Flame Ф Фeff References 
CH4/O2 0.17 1.02 (Fristrom et al., 1960) 
CH4/O2 0.21 0.87 (Peeter et al., 1973) 
CH4/O2/Ar 0.90 1.08 (Lazzara et al., 1973) 
C2H4/O2/Ar 0.59 0.99 (Peeter et al., 1974) 
C2H2/O2 0.12 1.29 (Vandooren et al., 1977) 
CH2O/O2 0.26 0.83 (Oldenhove et al., 1983) 
C3H8/O2/N2 0.80 0.99 (Bockhom et al., 1991) 
C2H2/O2/Ar 0.88 1.20 (Volpini et al., 1992) 
C3H6/O2/Ar 0.23 1.08 (Thomas et al., 1996) 
C7H16/O2/N2 0.70 1.03 (El Balkali., 2003) 
C8H18/O2/N2 0.70 1.03 (El Balkali., 2003) 
C2H4/O2/Ar 0.75 1.11 (Bhargava et al., 1998) 
C3H8/O2/N2 0.48 1.11 (Biet et al., 2005) 

 
 
 
 
                                                               



A. SEYDI et al. / Int. J. Biol. Chem. Sci. 8(6): 2750-2772, 2014 

 

 2756

0.0

500.0

1000.0

1500.0

2000.0

0 0.06 0.12 0.18 0.24 0.3

Height above burner(cm)

Konnov

UCSD

UDEL

Exp

T(K)

 
 
Figure 1:  Computed (lines) and measured (symbols) temperature profile in ethylene/O2/N2 at the 
equivalence ratio of 0.47. 
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Figure 2: Computed (lines) and measured (symbols) mole fraction profiles (Xi) of C2H4 in the 
ethylene /O2/N2 flame at equivalence ration of 0.47. 
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Figure 3:  Computed (lines) and measured (symbols) mole fraction (Xi) profiles of CO2 in the 
ethylene /O2/N2 flame at equivalence ration of 0.47. 
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Figure 4: Computed (lines) and measured (symbols) mole fraction profiles (Xi) of O2 in the 
ethylene /O2/N2 flame at equivalence ration of 0.47 
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Figure 5: Computed (lines) and measured (symbols) mole fraction (Xi) profiles of CO in the 
ethylene /O2/N2 flame at equivalence ration of 0.47 
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Figure 6: Computed (lines) and measured (symbols) mole fraction (Xi) profiles of H2O in the 
ethylene /O2/N2 flame at equivalence ration of 0.47. 
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Figure 7: Computed (lines) and measured (symbols) mole fraction (Xi) profiles of C3H8 in the 
ethylene /O2/N2 flame at equivalence ration of 0.47. 
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Figure 8: Computed (lines) and measured (symbols) mole fraction (Xi) profiles of H2 in the 
ethylene /O2/N2 flame at equivalence ration of 0.47. 
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 Figure 9: Computed (lines) and measured (symbols) mole fraction (Xi) profiles of C2H6 in the 
ethylene /O2/N2 flame at equivalence ration of 0.47. 
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Figure 10: Computed (lines) and measured (symbols) mole fraction (Xi) profiles of C3H6 in the 
ethylene /O2/N2 flame at equivalence ration of 0.47. 
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Figure 11:  Computed (lines) and measured (symbols) mole fraction (Xi) profiles of CH4 in the 
ethylene /O2/N2 flame at equivalence ration of 0.47. 
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Figure 12:  Computed (lines) and measured (symbols) mole fraction (Xi) profiles of C2H2 in the 
ethylene /O2/N2 flame at equivalence ration of 0.4. 
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Figure 13:  Computed (lines) and measured (symbols) mole fraction (Xi) profiles of CH2O in the 
ethylene /O2/N2 flame at the equivalence ratio of 0.47. 
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Figure 14:  Computed (lines) and measured (symbols) mole fraction (Xi) profiles of CH3CHO in 
the ethylene /O2/N2 flame at the equivalence ratio of 0.47. 
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DISCUSSION 
C2H4  kinetics 

Figure 15 compares the main ethylene 
consumption route in the leanest flame (φ = 
0.47). Only small variations are in the others 
equivalence ratios and the main differences 
identified from these mechanisms are 
common to both flames. The sequence and 
relative importance of reactions in this flame 
were examined with reaction path analysis. 
 For clarity purpose, the consumption paths 
are split into three parts: (i) the first steps in 
the fuel consumption, (ii) and (iii) the 
consumption of the main intermediates 
formed in (i): the vinyl and the vinoxy radical, 
respectively. 

According to these mechanisms, 
ethylene is mainly consumed by reactions 
C2H4 + O → CH3 + HCO (R.1), largely 
dominant 63% in UDEL mechanism, and 
contributes only to 22% and 37% in Konnov 
and UCSD mechanisms, respectively. In the 
Konnov mechanism, OH addition to C2H4: 
C2H4 + OH → CH3 + CH2O (R.2)) also 
contributes and the sum of reactions (R.1) and 
(R.2) represents 35.7% of the fuel conversion. 

The main intermediates in ethylene 
consumption are the vinyl and vinoxy radicals 
formed by the reactions: C2H4 + O, OH, H → 
C2H3 + OH, H2O, H2 (R.3) and reaction: C2H4 
+ O → CH2HCO + H (R.4). 

 
C2H3 kinetics 

The main consumption of C2H3 is due 
to the reaction with oxygen molecule to 
produce the vinoxy radicals C2H3 + O2 → 
CH2HCO + O (R.5), and formaldehyde C2H3 
+ O2 → CH2O + HCO (R.6). The C2H3 is also 
directly responsible for the formation of 
hydrocarbons such as C2H2:C2H3 + O2 → 
C2H2 + HO2 (R.7), with a contribution of 
11.6% (Konnov), 4.1% (UCSD) and 3.3% 
(UDEL), respectively, and C3H6: C2H3 + CH3 
+ M → C3H6 + M (R.8), with the same 
negligible contributions in the three 
mechanisms, for the 0.47 ethylene flame. The 
acetylene is then destroyed by O-atom 
reaction, and produces the ketenyl radical, by 
the reaction: C2H2 + O → HCCO + H (R.9). 

This reaction (R.9) is the main pathway of 
formation for HCCO, with a contribution of 
16% (Konnov), 2.35% (UCSD) and 2.96% 
(UDEL), respectively. The consumption of 
C3H6 allows the formation of C3H5 radical in 
the flames by the reaction: C3H6 + OH → 
C3H5 + H2O (R.10). 

The C3H5 radical consumption forms 
the propene through the reaction: C3H5 + H+ 
M → C3H6 + M (R.11), and, also the allene 
(a-C3H4) through the reactions: C3H5 + H → 
a-C3H4 + H2 (R.12), and reaction: C3H5 + OH 
→ a-C3H4 + H2O (R.13). 

Figure 19 clearly shows that different 
situation is observed when the consumption of 
vinoxy radical is considered. Indeed, the 
formation of ketene is common to the three 
mechanisms. It is the unique vinoxy radical 
consumption path in the UCSD mechanism 
(45.5%), it occurs dominantly in the UDEL 
mechanism (13.3%) whereas it is only a 
secondary path in Konnov mechanism 
(10.2%). In Konnov mechanism, CH3CO is 
the main intermediate (16.1%). 

According to the three mechanisms, the 
methane is produced from the methyl radical 
by the reaction: CH3 + H+ (M) → CH4 + M 
(R.14), with a contribution of 2.36% 
(Konnov), 3.73% (UCSD) and 4.40% (UDEL) 
for the ethylene 0.47 flame, and its main 
destruction leads to methyl radical formation 
by the reaction: CH4 + OH → CH3 + H2O 
(R.15). 

By recombination of CH3, the ethane 
(C2H6) is produced in the flames with a 
contribution of 12.2% (Konnov), 5% (UCSD) 
and 3.15% (UDEL), respectively, and its main 
consumption leads to the production of C2H5 
by the reaction: C2H6 + OH → C2H5 + H2O 
(R.16). 

One of the consumption pathways of 
the C2H5 radicals allows the formation of 
propane (C3H8), by reaction with methyl 
radical: C2H5 + CH3 → C3H8 (R.17), with 
small contribution in the three mechanisms, 
for the ethylene of 0.47. 

In the ethylene flame, the formation of 
acetylene (C2H2) comes directly from the 
consumption of vinyl radical (C2H3), by the 
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reactions: C2H3 + O2 → C2H2 + HO2 (R.18), 
with a contribution of 11.6% (Konnov), 4.1% 
(UCSD) and 3.3% (UDEL), respectively. 

 
Carbonyl compounds kinetics 

According to these mechanisms, the 
main formation of CH2O comes from the 
vinyl radical (C2H3) by the reaction (R.6), 
with a contribution of 7.0% (Konnov), 11.4% 
(UCSD) and 13.7% (UDEL) for the 0.47 
flame, respectively. Also, its formation comes 
from directly to the ethylene consumption, 
with a contribution about 14% in Konnov 
mechanism. The main formaldehyde 
consumption produces the formyl radical 
(HCO) with the reaction: CH2O + O → HCO 
+ OH    (R.19).  

These two last reactions (R.6) and 
(R.19) are the most important reactions for the 
HCO formation with a major contribution for 
(R.7): 7.0% (Konnov) against 13.7%   
(UCSD), 11.4 (UDEL) for the equivalence 
ratio of 0.47, respectively. HCO goes rapidly 
to carbon monoxide (CO) and then to carbon 
dioxide (CO2) by the reactions: HCO + O2 → 
CO + HO2 (R.20), CO + OH→ CO2 + H 
(R.21). 

The other carbonyl compound 
produced in these lean ethylene flames is the 
acetaldehyde (CH3CHO). The main 
production of acetaldehyde comes also from 
the vinyl radical with the reaction C2H3 + OH 
→ CH3CHO (R.22), with a contribution of 
2.3% (Konnov), this species is not included in 
UCSD mechanism, and negligible in (UDEL) 
mechanism for the ethylene 0.47 flame. Its 
consumption leads to the formation of acetyl 
radical (CH3CO) by the reactions CH3CHO + 
OH → CH3CO + H2O (R.23)  and CH3CHO + 
H → CH3CO + H2 (R.24), with  a contribution 
less than 1% (Konnov). These two reactions 
are negligible in UDEL mechanism. Then, by 
decomposition, the acetyl radical produces 
methyl radical and carbon monoxide: CH3CO 
+ M → CH3 + CO + M (R.25), with 9.5% 
(Konnov), and negligible in (UCSD) and 
(UDEL) mechanisms. 

A more careful examination shows that 
no differences are noticeable at maximum 

mole fraction of these two carbonyl 
compounds considering the experimental 
uncertainties estimated at 20% (Figures 13 
and 14). With oxygen in excess, all 
hydrocarbons formed as intermediate species 
are oxidized by reactions with O2, OH, O, and 
HO2. The maximum concentration is around 
1.8 x 10-3 for CH2O and CH3CHO. We can 
also observe that the final products CO2 and 
HO2. Have their concentrations controlled by 
the initial fuel content and these final mole 
fractions are similar in all the flames, around 
7.0 x 10-2 (Figures 3 and 6).  

These observations can be confirmed 
by calculating for each flame an “effective 

equivalence” ratio based on the proportion 

of oxygen consumed in the flame, 

Фeff =
)(

22

42

fOO

iHC

XiX

X

−
×3 

Where XC2H4 and XO2 are the fuel and 
oxygen mole fractions and subscripts i and f 
denote the initial and final compositions, the 
coefficient 3 is the stoichiometric factor for 
C2H4. 
    Values obtained from experiments and from 
modelling with the three mechanisms are 
listed in Table 2. 

All simulations lead to values very 
closed to 1.0. The higher values observed with 
the experimental results are related to the final 
oxygen concentrations which are 
systematically above the computed values. 

It was interesting to use published 
results on the structure of lean flames to 
perform the same calculations. Flame 
structure studied covering a large domain of 
equivalence ratios and different fuels have 
been considered and their effective 
equivalence ratios are grouped in Table 3. 

These experiments also produced 
values very closed to 1.0 for the effective 
equivalence ratio. The few discrepancies 
observed are due to uncertainties that affected 
the determination of the final O2 mole 
fraction. At least, one of the sources of these 
uncertainties is a perturbation of the diffusion 
induced by the sampling probe. Uncertainty 
for this species was determined by 
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propagation-of-errors analysis to be 10%. The 
constant value calculated for the effective 
equivalence ratio leads to the conclusion that 
lean flames are stoichiometric flames diluted 
by a mixture composed of inert constituent, 
usually nitrogen, and oxygen in excess. 
Flames extinction at the lean stability limit 
would not correspond to a change in the 
combustion chemistry but rather to a marked 
decrease in temperature.  

In this study, we have carried out 
sensitivity analyses in order to delineate the 
most sensitive reaction on the formation and 
consumption of these two carbonyl 
compounds. For this, the variation of the 
sensitivity coefficients is investigated with the 
equivalence ratio in terms of the sensitivity of 
mass fraction, in four ethylene flames (φ= 
0.471; 0.693; 0.703; 0.813).  
 
Sensitivities of mass fraction for 
formaldehyde 

The sensitivity of mass fraction for the 
carbonyl species in all mechanisms,   are 
presented in Figures 16 to 20 for lean ethylene 
flames. In the Konnov’s mechanism, 
reactions: CH2O + OH →  HCO + H2O 
(R.26) and reaction: H + O2 →  O + OH 
(R.27), are the most sensitive.              

The sensitivity of reaction (R.26) varies 
slightly with the equivalence ration, whereas 
which of reaction (R.27) increases with the 
equivalence. Three other reactions: CO + OH 
→  CO2 + H (R.28), CH3 + HO2 →  CH3O + 
OH (R.29), and CH2O + H →  HCO + H2 
(R.30), have also, high sensitivity coefficients. 
The sensitivity of reaction: C2H4 + OH →  
CH2O + CH3 (R.2), varies slightly with the 
equivalence ratio.                          

As observed in Konno’s mechanism, 
reactions (R.26) and (R.27) have the highest 
sensitivity coefficients in UCSD mechanism. 
The reactions CH3 + HO2 →  CH3O + OH 
(R.32), (R.3), (R.28) have also high sensitivity 
coefficients, but reaction (R.4) is the most 

sensitive reaction for the mass fraction of 
formaldehyde.               

In UDEL mechanism, reaction (R.28) 
is the most sensitive .The reactions (R.30), 
and (R.29) keep the sensitivity coefficients 
high. One of the characteristics of this 
mechanism is the influence of the equivalence 
ratio on the sensitivity of reaction H + O2 →  
O +OH (R.31). This sensitivity decreases 
when the equivalence ratio increases and 
increases in the leanest conditions, whereas 
reaction H + HO2 →  O2 +H2 (R.32) is 
relatively sensitive in lean conditions.      

       
Sensitivities of mass fraction for 
acetaldehyde 

The analysis of sensitivity coefficients 
for acetaldehyde was performed using the 
Konnov and UDEL mechanisms. The 
sensitivity coefficients for these two 
mechanisms are presented in Figures 15 and 
20 for the lean ethylene-air flames. 

In Konnov’s mechanism, reaction: H + 
O2 →  O + OH (R.33) is the most sensitive. 
Reactions: CO + OH →  CO2 + H (R.28), 
CH3CHO + OH →  CH2HCO + H2O (R.34), 
and HCO + (M) →  CO + H + (M) (R.34), H 
+ O2 + M →  HO2 + M (R.35), also, have 
high sensitivity coefficients. 

 Some reactions are sensitive to a fuel, 
specifically, reaction: C2H4 + OH →  C2H3 + 
H2O (R.3). 

As observed in Konnov mechanism, 
reaction: H + O2 →  O + OH (R.31), is one of 
the most sensitive reaction in UDEL 
mechanism, for the mass fraction of 
acetaldehyde whatever the equivalence ratio. 

Reaction (R.28), also has an important 
sensitivity coefficient. Evenly, reaction: C2H5 
+ O →  CH3HCO + H (R.36), is particularly 
sensitive to acetaldehyde. 

According to the results of the 
sensitivity coefficients of these carbonyl 
compounds, we can conclude that the 
chemistry of lean flames is not affected for the 
three mechanisms in the ethylene flames.
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Figure 15: Pathways analyse in the leanest (φ = 0.47) ethylene flame. 
 

 

 
 
Figure 16: Sensitivity analysis for mass fraction of CH2O in lean ethylene flames in Konnov 
mechanism. 
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Figure 17: Sensitivity analysis for mass fraction of CH2O in lean ethylene flames in UDEL 
mechanism. 
 

 
 
Figure 18: Sensitivity analysis for mass fraction of CH2O in lean ethylene flames in UCSD 
mechanism. 
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Figure 19: Sensitivity analysis for mass fraction of CH3CHO in lean ethylene flames in Konnov 
mechanism. 

 
 
 

 
 
Figure 20: Sensitivity analysis for mass fraction of CH3CHO in lean ethylene flames in UDEL 
mechanism.
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Conclusion 
The structures of premixed 

ethylene/oxygen/nitrogen flames at four 
equivalence ratios (0.47, 0.508, 0.693 and 
0.81) have been studied by gas 
chromatography and by FTIR, at atmospheric 
pressure. Temperature measurements were 
made with a Pt/Pt-10%Rh thermocouple, and 
a good agreement was observed between 
experimental and model.  

The very good agreement observed for 
the reactants consumption and the final 
products formation constitutes a minimum 
requisite since in very lean flames CO2 and 
H2O are the only final forms for C and H 
conversion, respectively. On the other hand, 
differences between mechanisms were 
observed when the prediction of the mole 
fraction profiles of the active intermediate 
species was considered. Pathways analyse 
helped in identifying the main causes of these 
differences. It was shown that the same 
reactions were involved in the three 
mechanisms to describe the consumption of 
ethylene, but with marked differences in their 
relative importance. C2H3 and CH2HCO are 
the main radicals formed in the first step and 
their consumption increases the differences 
between the mechanisms either by use of 
different kinetics data for common reactions 
or by differences in the nature of consumption 
reactions. 

The intermediate oxygenated species 
such as formaldehyde and acetaldehyde, are 
potential pollutants of lean flames, special 
attention was paid for their formation and 
consumption mechanisms. Sensitivities 
analyse allows to identify the reactions which 
influence the concentrations of these carbonyl 
compounds.  
. 
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