522 research outputs found

    Determination of inorganic arsenic in water by a quartz crystal microbalance

    Get PDF
    A quartz crystal microbalance sensor has been developed for the determination of inorganic arsenic species in water. The gold electrode surface was modified by a self-assembled layer of dithiothreitol, and the frequency change of the modified crystal was proportional to the arsenic concentration from 0 to around 50 µg L-1, a range which spans the current US EPA maximum contaminent level of 10 µg L-1 in drinking water. As dithiothreitol is capable of reducing arsenate to arsenite, the sensor detects both species. The method was applied to the determination of arsenic in spiked rain, tap, pond and bottled water; recoveries not significantly different from 100% were obtained for a number of spike additions of less than 10 µg L -1. Arsenic was only detected in the bottled water sample, at a concentration of 8 µg L-1. This method is simple, fast, and inexpensive compared with other conventional arsenic detection methods, and has the potential to be used in the field. © 2013 The Royal Society of Chemistry

    Mathematical knowledge and skills expected by higher education in engineering and the social sciences: Implications for high school mathematics curriculum

    Get PDF
    Cataloged from PDF version of article.One important function of school mathematics curriculum is to prepare high school students with the knowledge and skills needed for university education. Identifying them empirically will help making sound decisions about the contents of high school mathematics curriculum. It will also help students to make informed choices in course selection at high school. In this study, we surveyed university faculty members who teach first year university students about the mathematical knowledge and skills that they would like to see in incoming high school graduates. Data were collected from 122 faculty members from social science (history, law, psychology) and engineering departments (electrical/electronics and computer engineering). Participants were asked to indicate which high school mathematics topics and skills they thought were important to be successful at university education in their field. Results were compared across social science and engineering departments. Implications were drawn for curriculum specialists, students, and mathematics educators

    Very high two-dimensional hole gas mobilities in strained silicon germanium

    Get PDF
    We report on the growth by solid source MBE and characterization of remote doped Si/SiGe/Si two-dimensional hole gas structures. It has been found that by reducing the Ge composition to <=13% and limiting the thickness of the alloy layer, growth temperatures can be increased up to 950 °C for these structures while maintaining good structural integrity and planar interfaces. Record mobilities of 19 820 cm2 V−1 s−1 at 7 K were obtained in normal structures. Our calculations suggest that alloy scattering is not important in these structures and that interface roughness and interface charge scattering limit the low temperature mobilities

    The inexorable resistance of inertia determines the initial regime of drop coalescence

    Get PDF
    Drop coalescence is central to diverse processes involving dispersions of drops in industrial, engineering and scientific realms. During coalescence, two drops first touch and then merge as the liquid neck connecting them grows from initially microscopic scales to a size comparable to the drop diameters. The curvature of the interface is infinite at the point where the drops first make contact, and the flows that ensue as the two drops coalesce are intimately coupled to this singularity in the dynamics. Conventionally, this process has been thought to have just two dynamical regimes: a viscous and an inertial regime with a crossover region between them. We use experiments and simulations to reveal that a third regime, one that describes the initial dynamics of coalescence for all drop viscosities, has been missed. An argument based on force balance allows the construction of a new coalescence phase diagram

    Becoming international: On symbolic capital, conversion and privilege

    Get PDF
    The ‘international’ can be conceived of as a highly sought after symbolic capital. People seek to internationalise their curriculum vitae or resumes, study international subjects, get international diplomas, travel internationally, obtain international jobs. As symbolic capital the ‘international’ can be converted into ‘profit’ complementing other forms of capital (economic, cultural and social capital), deployed in struggles for social domination. It is used as a strategy of social positioning and social domination quasi-globally, but it is not recognised everywhere in the same way. We are particularly interested in the unequal distribution of this symbolic capital, the way differential conversion rates and social boundaries operate in the generation of social inequalities. For this, we will work with and against Bourdieu, in analysing the ‘international’ as a source of a highly contextual form of symbolic power, deployed in a variety of social group formations, but with uneven, differential effects, a naturalised and disguised form of domination. Ultimately, this article problematises how claims to ‘internationality’ operate in social relations and power-struggles and provides an analytical framework hereof. </jats:p

    Exchange-bias phenomenon: The role of the ferromagnetic spin strucutre

    Get PDF
    The exchange bias of antiferromagnetic-ferromagnetic (AFM-FM) bilayers is found to be strongly dependent on the ferromagnetic spin configuration. The widely accepted inverse proportionality of the exchange bias field with the ferromagnetic thickness is broken in FM layers thinner than the FM correlation length. Moreover, an anomalous thermal dependence of both exchange bias field and coercivity is also found. A model based on springlike domain walls parallel to the AFM-FM interface quantitatively accounts for the experimental results and, in particular, for the deviation from the inverse proportionality law. These results reveal the active role the ferromagnetic spin structure plays in AFM-FM hybrids which leads to a new paradigm of the exchange bias phenomenon

    A novel approach for preventing esophageal stricture formation: olmesartan prevented apoptosis

    Get PDF
    Accidentally ingested corrosive substances can cause functional and structural damage to the esophageal tissue resulting in stricture formation. It has been reported that the administration of olmesartan (OLM) can have anti-inflammatory, antifibrotic and antiapoptotic effects on injured tissue. The aim of our study was to check if OLM could prevent formation of scars in the corrosive esophageal burn model. Fifty-one Wistar Albino rats were divided into six groups: Control, Sham, OLM, Sham + OLM, Burn, and Burn + OLM. Olmesartan (5 mg/kg) was given by gavage once per day for 21 consecutive days after injury. The morphology of the esophagus was assessed after Masson trichrome staining, and apoptosis was evaluated using the terminal deoxynucleotidyl transferased UTP nick end labeling (TUNEL) method. The serum nucleosomes (as an indicator of apoptosis), serum p53 protein, and esophageal tissue p53 protein levels of each group were measured by immunoassays. Muscularis mucosa damage, submucosal collagen deposition, and tunica muscularis injury in the Burn + OLM group decreased significantly compared with the Burn group (p &lt; 0.05). Similarly, the number of apoptotic cells in the Burn + OLM group decreased compared with the Burn group (p &lt; 0.05). Serum levels of nucleosomes and p53 and tissue of p53 protein did not differ between the groups. Exogenously administered OLM can effectively prevent the occurrence of esophageal strictures caused by corrosive esophageal burns. (Folia Histochemica et Cytobiologica 2014, Vol. 52, No. 1, 29–35
    • …
    corecore