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Determination of inorganic arsenic in water by a quartz
crystal microbalance

Chengbei Li,a Aydan Elçi Basxaranb and Julian F. Tyson*a

supplies of stable power and gases. Some require additional high
purity reagents (for hydride generation) and some have relatively
long analysis times. Countries, such as Bangaldesh, that need to
monitor the arsenic content of millions of tube wells need access
to low-cost, eld-portable methodologies, for which the options
are limited.7 For measurements in the eld, colorimetric test kits
have been used for a long time, but they suffer from issues of
accuracy and precision and can give rise to rather large numbers
of false positive and false negative values.8 Most of these elds
test kits are based on the “Gutzeit” method, i.e. Gutzeit's modi-
cation of Marsh's original method,9 in which the inorganic
arsenic in a water sample reacts with zinc in acid solution to form
arsine gas that, in turn, reacts with a mercury or silver salt
impregnated into a lter paper strip exposed to the head-space of
the reaction vessel. Mercuric bromide is used in most commer-
cially available versions of the test, giving rise to a yellow-brown
coloration. Some of the more severe criticisms of the perfor-
mance of these kits no longer apply, as manufacturers have
responded with improved versions.10,11 As a portable instrument,
electrochemistry instrumentation, which can perform anodic
stripping voltammetry (ASV) and cathodic stripping voltammetry
(CSV) has some advantages over the various “naked-eye” arsenic
test kits. These electrochemical techniques are able to determine
arsenic at trace levels within few minutes. In addition, these
techniques can also distinguish between different oxidation
states, are easy to operate and, comparedwith other instrumental
techniques, are comparatively cheap. However, these methods
also suffer from interferences and matrix effects, which means
that voltammetric methods are rarely used for arsenic determi-
nation in complex matrixes, such as food samples. As Idowu et al.
point out: “it is unlikely that such methods could ever be made
robust enough . electrodes are notoriously ckle”.12 Thus,
accurate, fast measurement of arsenic in the eld remains a
technical challenge.7

One candidate technology is the quartz crystal “micro-
balance” (QCM), so called because a small change in mass of
the piezoelectric crystal affects the frequency of vibration, which
can be readily measured by a relatively inexpensive instrument.
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A quartz crystal microbalance sensor has been developed for the 
determination of inorganic arsenic species in water. The gold elec-
trode surface was modified by a self-assembled layer of dithio-
threitol, and the frequency change of the modified crystal was 
proportional to the arsenic concentration from 0 to around 50 mg L�1, 
a range which spans the current US EPA maximum contaminent level 
of 10 mg L�1 in drinking water. As dithiothreitol is capable of reducing 
arsenate to arsenite, the sensor detects both species. The method 
was applied to the determination of arsenic in spiked rain, tap, pond 
and bottled water; recoveries not significantly different from 100%
were obtained for a number of spike additions of less than 10 mg L�1. 
Arsenic was only detected in the bottled water sample, at a 
concentration of 8 mg L�1. This method is simple, fast, and inexpen-
sive compared with other conventional arsenic detection methods, 
and has the potential to be used in the field.

Introduction

The contamination of groundwater by inorganic arsenic is a 
serious problem all over the world.1 The World Health Organi-
zation recommends that the maximum concentration of arsenic 
in drinking water is 10 mg L�1, though for some countries, such 
as Bangladesh, 50 mg L�1 is still the action limit.2 To accurately 
determine the arsenic concentration in water samples, many 
methods that include atomic spectrometry techniques, such as 
AFS,3 ICP-MS,4 ICP-AES,5 and HG-AAS6 have been developed. All 
of these techniques have detection limits low enough to allow 
reliable measurement of concentrations at 10 mg L�1 and can 
tolerate the matrix effects from a variety of water samples, so 
that analysis is possible with minimum sample preparation by 
direct introduction of the sample into the instrument. However, 
these instruments are large and expensive, and they need
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10.0 mL of water in order to make a 15.4 g L�1 (0.100 M) stock
solution. The lower concentration solutions, 1.50 mg L�1

(20.0 mM) arsenite 1.50 mg L�1 (20.0 mM) arsenate, 3.09 mg L�1

(20.0 mM) DTT and 1.54 mg L�1 (10.0 mM) DTT, were prepared
from the stock solutions by step-wise dilution. Solutions of low
DTT concentration were freshly prepared before each experi-
ment and purged with nitrogen gas for 4 min.

The gold electrode surface was modied with 1,6-hex-
anedithiol (HDT) as an alternative to DDT; 0.118 g of solid HDT
was dissolved in 10 mL of 5% ethanol to make an 11.8 g L�1

(0.100 M) stock solution. The lower concentration solutions,
2.36 mg L�1 (20.0 mM) HDT were prepared from the stock
solutions by serial dilution. The crystal was immersed in
20.0 mMHDT solution for 1 h before measurements were made.

Before each experiment, the crystal was immersed into 10 mL
“piranha” solution (a 3 + 1 mixture of concentrated sulfuric acid
and 30% hydrogen peroxide) for 3 min followed by rinsing with
deionized water. Finally, the crystal was dried with nitrogen gas.

For arsenite measurements, the crystal holder was
completely immersed in 50 mL of 20.0 mMDTT solution and the
frequency change from that in air to the stable value in solution
recorded for approximately 5 minutes until the signal stabi-
lized. Arsenite solution (1.50 mg L�1) was added 50 mL at a time
and the stable frequency recorded aer each addition. The
additions were continued until the nal arsenite concentration
was 50.0 mg L�1 (0.670 mM). For the measurement of arsenate,
an additional 5 min was allowed for the reduction to arsenite
before recording the frequency. As the calibration curve rolled
over when the arsenate concentration was above 15.0 mg L�1

(0.200 mM), the measurements were stopped when the nal
arsenate concentration was 10.0 mg L�1 (0.130 mM). Calibration
curves were based on the frequency change as a function of
arsenic concentration.

To study the effect of the DTT concentration, 10 mM DTT
solution was used instead of 20 mM. All the other procedures
were as described above.

Interference study

To study possible interferences, a water sample was prepared
with a composition similar to that of Bangladesh ground-
water,19 containing the potentially interfering constituents Na+,
K+, Ca2+, Mg2+, Cu2+, Fe3+, Cl�, NO3

�, and SO4
2�. These were

added individually to a 6 mg L�1 arsenic solution at the
concentrations shown in Table 1. In initial experiments, it was
found that both copper and iron interfered, and EDTA was
added (as the disodium salt) as a possible masking reagent.
Krug et al. showed20 that EDTA was effective at masking the
interference of copper and iron in the determination of boron
as borate, H3BO3 (in plant extracts) when added online in a ow
injection spectrophotometric procedure. Although the reaction
between EDTA and iron or copper is rapid, we found that
satisfactory results were only obtained if the mixture was heated
to boiling for an hour. This suggests that there is a kinetic
limitation involved in the relevant reactions, but we have not
investigated what this might be. It is known that some hydrated
metal ions, such as chromium and aluminum, react slowly

The devices were rst used for sensing the adsorption of ana-
lytes from the vapor phase13 (by coating the crystal with a suit-
able adsorbent), but as the crystals will oscillate in water, 
procedures have been developed for sensing a variety of species 
in solution, including anions, such as phosphate, sulfate and 
selenite, for which the surface of the crystal was coated with an 
appropriate sensing material.14–16

Dithiothreitol (DTT), HSCH2CH(OH)CH(OH)CH2SH, the 
threo isomer of 2,3-dihydroxy-1,4-dithiobutane [IUPAC (2R,3R-) 
1,4-bis(sulfanyl)butane-2,3-diol] has been used for inorganic 
arsenic detection by Kalluri et al.17 and Forzani et al.18 Kalluri 
and co-workers reported a DTT, glutathione (GSH) and cysteine 
(Cys) modied gold-nanoparticle-based dynamic light scattering 
assay for label-free detection of arsenic, with detection limit of 
10 pg L�1. Forzani and co-workers developed a surface plasmon 
resonance sensor with DTT as the “recognition element” to detect 
total arsenic in ground water. Since DTT has two sulfur-containing 
groups, one can form a sulfur–gold bond with the surface of the 
sensing electrode and the other can form a sulfur–arsenic bond 
with the arsenic species in water. DTT can also reduce arsenate to 
arsenite, thus, this method can be used for the determination of 
arsenate without adding other reducing agents.13

We have developed a QCM procedure, in which the gold 
electrode was modied with DTT, as a potential portable arsenic 
sensor, which responds within 5 min and measures arsenite 
concentrations in a variety of water samples over the range 1 to 
50 mg L�1.

Experimental
Apparatus

Measurements were made with a QCM200 Quartz Crystal 
Microbalance Digital Controller equipped with the QCM25 5 
MHz Crystal Oscillator (Stanford Research Systems, Sunnyvale, 
CA, USA). The 2.54 cm diameter crystals are contacted on both 
sides by chromium/gold electrodes whose surface areas are 1.37 
and 0.20 cm2, respectively. The crystal was mounted in a 
Kynar� holder so that the larger chromium/gold electrode 
surface was exposed to the solution. Frequency data were 
recorded by the LabVIEW soware, which was download from 
the Stanford Research System website.

Reagents

Analytical reagent grade chemicals were used. 1,6-Hexanedithiol, 
dithiothreitol (C4H10O2S2), sodium arsenate, sodium arsenite, 
hydrogen peroxide and sulfuric acid were all purchased from 
Fisher Scientic (Pittsburgh, PA, USA). Ethylenediaminetetra–
acetic acid disodium salt was purchased from Mallinckrodt 
Chemical Inc. (St Louis, MO, USA). All working solutions were 
prepared in deionized distilled water (18.0 MU cm) obtained from 
a Barnstead E-Pure water system (Dubuque, IA, USA).

Measurements

Sodium arsenite (0.173 g) and of sodium arsenate (0.417 g) were 
separately dissolved into 10.0 mL of water, in order to make 
10.0 g L�1 (as As) solutions. Solid DTT (0.154 g) was dissolved in

http://dx.doi.org/10.1039/c3ay40876k


cannot be completely dissolved in water without adding ethanol
and (b) the compound has an unpleasant odor.

A typical response of the QCM sensor immersed in DTT
solution aer adding a total of 750 mL (15 50 mL portions) of a
solution containing 1.50 mg L�1 of arsenite solution is shown in
Fig. 1, from which it can be seen that the frequency decreased
relatively rapidly in the rst minute and then more slowly to
reach a stable value aer 4 min. The temperature coefficient of
the crystal is about 8 Hz per degree,22 thus the transient 3–4 Hz
excursions at around 1 and 2 min could be caused by temper-
ature uctuations of less than half a degree.

The calibration curves are shown in Fig. 2 and 3 for arsenite
and arsenate, respectively. It can be seen that a usable calibra-
tion range of up to 50.0 mg L�1 (0.670 mM) was achieved in the
case of arsenite, and up to 15.0 mg L�1 (0.200 mM) in the case of
arsenate. The equations for the best t lines are DF ¼ 1.81C +
714 for arsenite and DF ¼ 2.44C + 699 for arsenate, where DF is
the frequency change in Hz and C is the concentration in
solution in mg L�1. The same experimental procedure was also
applied for a lower DTT concentration. As shown in Fig. 4, the
linear range was only up to 10.0 mg L�1 (0.130 mM) of arsenite
when using the 1.54 mg L�1 (10.0 mM) DTT solution.
The equation for the best t line is DF ¼ 10.0C + 708. The
detection limit for arsenic, as arsenite, is 0.6 mg L�1, which was
calculated from the standard deviation of the frequency
changes over 5 min when measuring a blank.

Species Concentration (mg L�1)

Na+ 320
K+ 15.8
Ca2+ 43.3
Mg2+ 24.9
Cu2+ 0.090
Fe3+ 0.4
Cl� 347
NO3

� 5.33
SO4

2� 2.56

Fig. 1 Frequency response of the DTT-coated QCM sensor, immersed in 50 mL,
as a function of time following the addition of 15 50 mL portions of a solution
containing 1.5 mg L�1 arsenic as arsenite.

Fig. 2 Frequency change as a function of arsenite concentration. The concen-
tration of DTTwas 3.08mg L�1. The straight line is the best fit by unweighted least
squares regression.

because of the strength of the metal–water bonds. It is also 
known that some reactions in which the metal in an EDTA 
complex is exchanged are slow; for example, the reaction 
between NiEDTA and Fe(III) requires heating for several hours.21 

There is no evidence that anionic species react with EDTA, and 
so we do not think that there is any reaction between the arsenic 
species (either the original protonated arsenite or arsenate or 
the As–DTT species), and we consider that arsenic will react 
preferentially with the sulfur in the DTT rather than the oxygen 
or nitrogen atoms of the EDTA. It is possible that iron and 
copper arsenate species are formed. Insoluble compounds and 
minerals of both elements and arsenate are known. If these 
species were kinetically inert, heating would accelerate their 
decomposition and formation of the metal EDTA complexes.

In our study, 18.6 g L�1 disodium EDTA stock solution was 
prepared and 5 mL of this stock solution was added to a 50 mL 
of water sample. Measurements were made aer boiling and 
cooling to room temperature.

Real water sample analysis

A number of real water samples were analyzed including 
rainwater, pond water (Puffers Pond Amherst, MA), river 
water (Connecticut River, Northampton, MA), and bottled 
water purchased from a local supermarket. All the samples 
(50 mL) were ltered through 0.45 mm lter media, and 
disodium EDTA stock solution was added give a concentra-
tion of 1.86 g L�1 and 10 mL of 15.4 g L�1 (0.100 M) DTT was 
added so that the nal concentration of DTT was 3.09 mg L�1 

(20.0 mM). The crystal was rst immersed into 50 mL 20.0 mM 
DTT solution and the baseline frequency was recorded aer 5 
min when the signal was stable. To determine the arsenic 
concentration in water samples, standard additions calibra-
tion was applied. For each addition, 100 mL of 1.50 mg L�1 

arsenite solution was added and the frequency was recorded 
once the signal was stable. Three additions were made for 
each sample. To evaluate the effects of the various matrices 
on the determination, samples were spiked with various 
concentrations of arsenite.

Results and discussion

Although HDT also showed an ability to selectively bind arsenite 
in water, it was considered less suitable than DTT as (a) it

Table 1 Concentrations of potentially interering ions in a Bangladesh 
groundwater19
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molecules of DTT, the total mass on the surface would be 5.7 mg,
well above that needed to produce a 40 Hz change in frequency.
The experiments were performed in a 50 mL container and thus
each mg L�1 change in concentration corresponds to 50 ng of
arsenic, which in turn corresponds to 0.254 mg of As(DTT)2. If
this were all bound to the surface, the slope of the calibration
would be 10.5 Hz (per mg L�1). As the slopes for the arsenite and
arsenate calibrations are 1.81 and 2.44 Hz (per mg L�1), we
deduce that not all of the arsenic is bound. This is consistent
with an equilibrium model, in which the arsenic species parti-
tion between the solution phase and the phase bound to the
quartz surface.

It is noted that the slope of the calibration for arsenate is
higher than that for arsenite, but that the linear range is
shorter. It is proposed that the arsenic-containing species
bound to the electrode surface responsible for the change in
vibrational frequency is heavier in the case of arsenate than that
bound in the case of arsenite, and this suggests that the
reduction of arsenate by DTT does not lead to exactly the
same species as are formed when arsenite and DTT are present
in the solution. It might be expected that the product of the
redox reaction with arsenate would be a dithiane ring (cyclic
disulde),24 which, in turn, could react with the arsenite in
solution, but would not be available to assist with the binding of
an arsenic-species to the surface. It is noted that the response to
arsenite continues into a region in which there are more arse-
nite molecules than DTT molecules, suggesting that a more
complex mechanism is responsible for the frequency than
simple binding viaDTT to the surface. For arsenite, the working
linear range can be improved by increasing the concentration of
DTT solution.

Interference study

Among the ions investigated, only Cu(II) and Fe(III) interfered
when the Cu(II) concentration was higher than 90 mg L�1 and the
Fe(III) concentration was higher than 0.4 mg L�1. The response
to arsenite in the presence of 90.0 mg L�1 of Cu2+, 0.400 mg L�1

of Fe3+ and 1.86 g L�1 of disodium EDTA is shown in Fig. 5. The
equation for the best t line is DF ¼ 2.97C + 664. It is clear that
aer adding EDTA, copper and iron interferences were
successfully eliminated.

Fig. 3 Frequency change as a function of arsenate concentration dependence of
the frequency change. The concentration of DTT was 3.08 mg L�1. The straight
line is the best fit by unweighted least squares regression.

Fig. 4 Frequency change as a function of arsenite concentration. The concen-
tration of DTTwas 1.54mg L�1. The straight line is the best fit by unweighted least
squares regression.

Fig. 5 Frequency change as a function of arsenite concentration in the presence
of EDTA as masking reagent. The concentration of DTT was 3.08 mg L�1, of Cu2+

was 90.0 mg L�1, of Fe3+ was 0.400 mg L�1 and of EDTA was 1.86 g L�1. The
straight line is the best fit by unweighted least squares regression.

It is assumed that when the crystal is rst immersed in the 
DTT solution, DTT binds to the surface in a self-assembled 
monolayer, as this behaviour is well known for alkanethiols at 
gold.23 When arsenite is then added, there are two possible 
reactions: (1) arsenite reacts with DTT in solution, exchanging 
up to three OH groups for one S of DTT, and (2) arsenite reacts 
with the exposed thiol groups of the DTT bound to the crystal 
surface. If reaction 1 predominates, then it is considered that a 
second reaction occurs in which the arsenic–DTT species are 
exchanged for surface-bound DTT molecules. As the system 
responds to arsenate, it is deduced that reaction between 
solution arsenate species and DTT occurs to reduce arsenate to 
arsenite and that this reaction is followed by whatever processes 
are responsible for the binding of an arsenite species to the 
electrode surface.

The 40 Hz decrease in frequency seen in Fig. 1 corresponds 
to a mass loading of 0.97 mg on the basis of the simple response 
model of DF ¼ �CfDm, where DF is the frequency change, Cf is 
the sensitivity factor and Dm is the change is mass. For the 5 
MHz AT-cut crystals used in this study, Cf is 56.6 Hz cm2 mg�1.22

Gold has a surface coverage potential of approximately 10�9 

mol cm�2 for alkanethiols,22 and if the arsenic-containing 
species that binds to each DTT tethered to the surface is 
As(DTT)2 then complete coverage would correspond to an 
additional 0.52 mg. As this is somewhat less than the 0.97 mg 
needed for a 40 Hz change, we suggest that multilayers are 
formed. If all the arsenic in the 750 mL could be attached to the 
surface, and each atom of arsenic was associated with two
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Compared with performance characteristics of eld test kits
based on the Gutzeit reaction,25 the QCM method is more
sensitive, more accurate and faster (once a sample has been
treated with EDTA). As the instrumentation has low power
consumption and is compact, it has the potential to be used
outside the laboratory.
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