826 research outputs found
Initiation and final failure via environmentally assisted cracking in high strength aluminium
Environmentally assisted cracking (EAC) is particularly important to understand and control in high strength aluminium used in engineering applications as moist air provides a suitable environment to assist cracking in these materials. Propagation of EAC has been widely investigated but initiation has been difficult to follow due to it’s stochastic nature. We show that time-lapse 3D imaging using X-ray computed tomography offers a way to survey large surface areas whilst maintaining site specific high resolution information giving new insights into this process. In addition the final failure of these materials occurs when the environmentally assisted cracks of intergranular or transgranular type grow to a critical length from the initiation sites. We show through mechanical testing assessment and high resolution fractography that the rapid fracture that follows is also assisted by the environment leading to reduced ductility during the final failure.
Examples from AA5083-H131 and AA7085-T7651 are shown which appear to show the same general behaviour. Round dog bone specimens prepared in the Short Transverse direction were subjected to slow strain rate testing (SSRT) at different strain rates and in different environments. Samples were also pre-exposed to different environments to introduce small corrosion sites to act as ‘realistic’ stress raisers in the specimens
Dissociation of Response and Feedback Negativity in Schizophrenia: Electrophysiological and Computational Evidence for a Deficit in the Representation of Value
Contrasting theories of schizophrenia propose that the disorder is characterized by a deficit in phasic changes in dopamine activity in response to ongoing events or, alternatively, by a weakness in the representation of the value of responses. Schizophrenia patients have reliably reduced brain activity following incorrect responses but other research suggests that they may have intact feedback-related potentials, indicating that the impairment may be specifically response-related. We used event-related brain potentials and computational modeling to examine this issue by comparing the neural response to outcomes with the neural response to behaviors that predict outcomes in patients with schizophrenia and psychiatrically healthy comparison subjects. We recorded feedback-related activity in a passive gambling task and a time estimation task and error-related activity in a flanker task. Patients’ brain activity following an erroneous response was reduced compared to comparison subjects but feedback-related activity did not differ between groups. To test hypotheses about the possible causes of this pattern of results, we used computational modeling of the electrophysiological data to simulate the effects of an overall reduction in patients’ sensitivity to feedback, selective insensitivity to positive or negative feedback, reduced learning rate, and a decreased representation of the value of the response given the stimulus on each trial. The results of the computational modeling suggest that schizophrenia patients exhibit weakened representation of response values, possibly due to failure of the basal ganglia to strongly associate stimuli with appropriate response alternatives
Meningococcal genetic variation mechanisms viewed through comparative analysis of Serogroup C strain FAM18
Copyright @ 2007 Public Library of ScienceThe bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements) provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an impact on the interaction with the host tissues, and understanding these mechanisms is important to aid our understanding of the intimate and complex relationship between the human nasopharynx and the meningococcus.This work was supported by the Wellcome Trust through the Beowulf Genomics Initiative
On Bootstrap Percolation in Living Neural Networks
Recent experimental studies of living neural networks reveal that their
global activation induced by electrical stimulation can be explained using the
concept of bootstrap percolation on a directed random network. The experiment
consists in activating externally an initial random fraction of the neurons and
observe the process of firing until its equilibrium. The final portion of
neurons that are active depends in a non linear way on the initial fraction.
The main result of this paper is a theorem which enables us to find the
asymptotic of final proportion of the fired neurons in the case of random
directed graphs with given node degrees as the model for interacting network.
This gives a rigorous mathematical proof of a phenomena observed by physicists
in neural networks
Response Monitoring in De Novo Patients with Parkinson's Disease
BACKGROUND: Parkinson's disease (PD) is accompanied by dysfunctions in a variety of cognitive processes. One of these is error processing, which depends upon phasic decreases of medial prefrontal dopaminergic activity. Until now, there is no study evaluating these processes in newly diagnosed, untreated patients with PD ("de novo PD"). METHODOLOGY/PRINCIPAL FINDINGS: Here we report large changes in performance monitoring processes using event-related potentials (ERPs) in de novo PD-patients. The results suggest that increases in medial frontal dopaminergic activity after an error (Ne) are decreased, relative to age-matched controls. In contrast, neurophysiological processes reflecting general motor response monitoring (Nc) are enhanced in de novo patients. CONCLUSIONS/SIGNIFICANCE: It may be hypothesized that the Nc-increase is at costs of dopaminergic activity after an error; on a functional level errors may not always be detected and correct responses sometimes be misinterpreted as errors. This pattern differs from studies examining patients with a longer history of PD and may reflect compensatory processes, frequently occurring in pre-manifest stages of PD. From a clinical point of view the clearly attenuated Ne in the de novo PD patients may prove a useful additional tool for the early diagnosis of basal ganglia dysfunction in PD
Dopamine transporter (DAT1) and dopamine receptor D4 (DRD4) genotypes differentially impact on electrophysiological correlates of error processing
Peer reviewedPublisher PD
A study of general practitioners' perspectives on electronic medical records systems in NHS Scotland
<b>Background</b> Primary care doctors in NHSScotland have been using electronic medical records within their practices routinely for many years. The Scottish Health Executive eHealth strategy (2008-2011) has recently brought radical changes to the primary care computing landscape in Scotland: an information system (GPASS) which was provided free-of-charge by NHSScotland to a majority of GP practices has now been replaced by systems provided by two approved commercial providers. The transition to new electronic medical records had to be completed nationally across all health-boards by March 2012. <p></p><b>
Methods</b> We carried out 25 in-depth semi-structured interviews with primary care doctors to elucidate GPs' perspectives on their practice information systems and collect more general information on management processes in the patient surgical pathway in NHSScotland. We undertook a thematic analysis of interviewees' responses, using Normalisation Process Theory as the underpinning conceptual framework. <p></p>
<b>Results</b> The majority of GPs' interviewed considered that electronic medical records are an integral and essential element of their work during the consultation, playing a key role in facilitating integrated and continuity of care for patients and making clinical information more accessible. However, GPs expressed a number of reservations about various system functionalities - for example: in relation to usability, system navigation and information visualisation.
<b>Conclusion </b>Our study highlights that while electronic information systems are perceived as having important benefits, there remains substantial scope to improve GPs' interaction and overall satisfaction with these systems. Iterative user-centred improvements combined with additional training in the use of technology would promote an increased understanding, familiarity and command of the range of functionalities of electronic medical records among primary care doctors
Recommended from our members
Sex Hormone Status in Women With Chronic Kidney Disease: Survey of Nephrologists’ and Renal Allied Health Care Providers’ Perceptions
Background: Chronic kidney disease (CKD) in reproductive-age women is accompanied by menstrual and fertility disorders and premature menopause. Objective: We sought to determine nephrologists’ and allied health care providers’ perceptions on management of sex hormone status in women with CKD. Methods: An anonymous, Internet-based survey was sent to nephrology society members from Canada, Australia, New Zealand, and the United Kingdom, and the Canadian Association of Nephrology Nurses and Technologists (February-November 2015). We assessed reported perceptions and management of sex hormone status in women with CKD. Results: One hundred seventy-five nephrologists (21% response rate) and 121 allied health care providers (30%; 116 nurses, 5 pharmacists) responded. Sixty-eight percent of nephrologists and 46% of allied providers were between the ages of 30 and 50 years, and 38% of nephrologists and 89% of allied workers were female. Ninety-five percent of nephrologists agreed that kidney function impacts sex hormone status, although only a minority of nephrologists reported often discussing fertility (35%, female vs male nephrologists, P = .06) and menstrual irregularities with their patients (15%, female vs male nephrologists,P = .02). Transplant nephrologists reported discussing fertility more often than did nontransplant nephrologists (53% vs 30%, P = .03). Physicians were more likely to report discussing fertility (33% vs 7.5%, P < .001) and menstrual irregularities (15% vs 9%, P = .04) with patients than allied health care providers. Forty-three percent of physicians reported uncertainty about the role for postmenopausal hormone therapy in women with CKD. Conclusion: Nephrologists and allied health care providers recognize an impact of CKD on sex hormones in women but report not frequently discussing sex hormone–related issues with patients. Our international survey highlights an important knowledge gap in nephrology
Cooperative Behavior of Kinetically Constrained Lattice Gas Models of Glassy Dynamics
Kinetically constrained lattice models of glasses introduced by Kob and
Andersen (KA) are analyzed. It is proved that only two behaviors are possible
on hypercubic lattices: either ergodicity at all densities or trivial
non-ergodicity, depending on the constraint parameter and the dimensionality.
But in the ergodic cases, the dynamics is shown to be intrinsically cooperative
at high densities giving rise to glassy dynamics as observed in simulations.
The cooperativity is characterized by two length scales whose behavior controls
finite-size effects: these are essential for interpreting simulations. In
contrast to hypercubic lattices, on Bethe lattices KA models undergo a
dynamical (jamming) phase transition at a critical density: this is
characterized by diverging time and length scales and a discontinuous jump in
the long-time limit of the density autocorrelation function. By analyzing
generalized Bethe lattices (with loops) that interpolate between hypercubic
lattices and standard Bethe lattices, the crossover between the dynamical
transition that exists on these lattices and its absence in the hypercubic
lattice limit is explored. Contact with earlier results are made via analysis
of the related Fredrickson-Andersen models, followed by brief discussions of
universality, of other approaches to glass transitions, and of some issues
relevant for experiments.Comment: 59 page
Genomic landscape of drug response reveals novel mediators of anthelmintic resistance
Like other pathogens, parasitic helminths can rapidly evolve resistance to drug treatment. Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes is key to tracking its spread and improving the efficacy and sustainability of parasite control. Here, we use an in vivo genetic cross between drug-susceptible and multi-drug-resistant strains of Haemonchus contortus in a natural host-parasite system to simultaneously map resistance loci for the three major classes of anthelmintics. This approach identifies new alleles for resistance to benzimidazoles and levamisole and implicates the transcription factor cky-1 in ivermectin resistance. This gene is within a locus under selection in ivermectin-resistant populations worldwide; expression analyses and functional validation using knockdown experiments support that cky-1 is associated with ivermectin survival. Our work demonstrates the feasibility of high-resolution forward genetics in a parasitic nematode and identifies variants for the development of molecular diagnostics to combat drug resistance in the field
- …