279 research outputs found

    Surface science of soft scorpionates

    Get PDF
    The chemisorption of the soft scorpionate Li[PhTmMe] onto silver and gold surfaces is reported. Surface enhanced Raman spectroscopy in combination with the Raman analysis of suitable structural models, namely, [Cu(κ3-S,S,S-PhTmMe)(PCy3)], [Ag(κ3-S,S,S-PhTmMe)(PCy3)], [Ag(κ2-S,S-PhTmMe)(PEt3)], and [Au(κ1-S-PhTmMe)(PCy3)], are employed to identify the manner in which this potentially tridentate ligand binds to these surfaces. On colloidal silver surface-enhanced Raman spectroscopy (SERS) spectra are consistent with PhTmMe binding in a didentate fashion to the surface, holding the aryl group in close proximity to the surface. In contrast, on gold colloid, we observe that the species prefers a monodentate coordination in which the aryl group is not in close proximity to the surface

    The Development of Mouse APECED Models Provides New Insight into the Role of AIRE in Immune Regulation

    Get PDF
    Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy is a rare recessive autoimmune disorder caused by a defect in a single gene called AIRE (autoimmune regulator). Characteristics of this disease include a variable combination of autoimmune endocrine tissue destruction, mucocutaneous candidiasis and ectodermal dystrophies. The development of Aire-knockout mice has provided an invaluable model for the study of this disease. The aim of this review is to briefly highlight the strides made in APECED research using these transgenic murine models, with a focus on known roles of Aire in autoimmunity. The findings thus far are compelling and prompt additional areas of study which are discussed

    Intracellular SERS nanoprobes for distinction of different neuronal cell types.

    Get PDF
    Distinction between closely related and morphologically similar cells is difficult by conventional methods especially without labeling. Using nuclear-targeted gold nanoparticles (AuNPs) as intracellular probes we demonstrate the ability to distinguish between progenitor and differentiated cell types in a human neuroblastoma cell line using surface-enhanced Raman spectroscopy (SERS). SERS spectra from the whole cell area as well as only the nucleus were analyzed using principal component analysis that allowed unambiguous distinction of the different cell types. SERS spectra from the nuclear region showed the developments during cellular differentiation by identifying an increase in DNA/RNA ratio and proteins transcribed. Our approach using nuclear-targeted AuNPs and SERS imaging provides label-free and noninvasive characterization that can play a vital role in identifying cell types in biomedical stem cell research

    Universal surface-enhanced Raman tags : individual nanorods for measurements from the visible to the infrared (514 – 1064 nm)

    Get PDF
    Surface-enhanced Raman scattering (SERS) is a promising imaging modality for use in a variety of multiplexed tracking and sensing applications in biological environments. However, the uniform production of SERS nanoparticle tags with high yield and brightness still remains a significant challenge. Here, we describe an approach based on the controlled co-adsorption of multiple dye species onto gold nanorods to create tags that can be detected across a much wider range of excitation wavelengths (514 – 1064 nm) compared to conventional approaches that typically focus on a single wavelength. This was achieved without the added complexity of nanoparticle aggregation or growing surrounding metallic shells to further enhance the surface-enhanced resonance Raman scattering (SERRS) signal. Correlated Raman and scanning electron microscopy mapping measurements of individual tags were used to clearly demonstrate that strong and reproducible SERRS signals at high particle yields (>92 %) were readily achievable. The polyelectrolyte-wrapped nanorod-dye conjugates were also found to be highly stable as well as non-cytotoxic. To demonstrate the use of these universal tags for the multimodal optical imaging of biological specimens, confocal Raman and fluorescence maps of stained immune cells following nanoparticle uptake were acquired at several excitation wavelengths and compared with dark-field images. The ability to colocalize and track individual optically encoded nanoparticles across a wide range of wavelengths simultaneously will enable the use of SERS alongside other imaging techniques for the real-time monitoring of cell-nanoparticle interactions

    An Inserted α/β Subdomain Shapes the Catalytic Pocket of Lactobacillus johnsonii Cinnamoyl Esterase

    Get PDF
    Microbial enzymes produced in the gastrointestinal tract are primarily responsible for the release and biochemical transformation of absorbable bioactive monophenols. In the present work we described the crystal structure of LJ0536, a serine cinnamoyl esterase produced by the probiotic bacterium Lactobacillus johnsonii N6.2.We crystallized LJ0536 in the apo form and in three substrate-bound complexes. The structure showed a canonical α/β fold characteristic of esterases, and the enzyme is dimeric. Two classical serine esterase motifs (GlyXSerXGly) can be recognized from the amino acid sequence, and the structure revealed that the catalytic triad of the enzyme is formed by Ser(106), His(225), and Asp(197), while the other motif is non-functional. In all substrate-bound complexes, the aromatic acyl group of the ester compound was bound in the deepest part of the catalytic pocket. The binding pocket also contained an unoccupied area that could accommodate larger ligands. The structure revealed a prominent inserted α/β subdomain of 54 amino acids, from which multiple contacts to the aromatic acyl groups of the substrates are made. Inserts of this size are seen in other esterases, but the secondary structure topology of this subdomain of LJ0536 is unique to this enzyme and its closest homolog (Est1E) in the Protein Databank.The binding mechanism characterized (involving the inserted α/β subdomain) clearly differentiates LJ0536 from enzymes with similar activity of a fungal origin. The structural features herein described together with the activity profile of LJ0536 suggest that this enzyme should be clustered in a new group of bacterial cinnamoyl esterases

    Biogenesis and functions of bacterial S-layers.

    Get PDF
    The outer surface of many archaea and bacteria is coated with a proteinaceous surface layer (known as an S-layer), which is formed by the self-assembly of monomeric proteins into a regularly spaced, two-dimensional array. Bacteria possess dedicated pathways for the secretion and anchoring of the S-layer to the cell wall, and some Gram-positive species have large S-layer-associated gene families. S-layers have important roles in growth and survival, and their many functions include the maintenance of cell integrity, enzyme display and, in pathogens and commensals, interaction with the host and its immune system. In this Review, we discuss our current knowledge of S-layer and related proteins, including their structures, mechanisms of secretion and anchoring and their diverse functions
    corecore