
Strathprints Institutional Repository

Reglinski, J. and Spicer, M.D. and Smith, W.E. (2010) Surface science of soft scorpionates.
Inorganic chemistry, 49 (4). pp. 1420-1427. ISSN 0020-1669

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9029868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


          
 
 
Reglinski, J. and Spicer, M.D. and Smith, W.E. (2010) Surface science of soft scorpionates. Inorganic 
Chemistry, 49 (4). pp. 1420-1427. ISSN 0020-1669
 

 
http://strathprints.strath.ac.uk/27565/  

 
This is an author produced version of a paper published in Inorganic Chemistry, 49 (4). pp. 1420-1427. 
ISSN 0020-1669. This version has been peer-reviewed but does not include the final publisher proof 
corrections, published layout or pagination.   

 
Strathprints is designed to allow users to access the research output of the University of 
Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the 
individual authors and/or other copyright owners. You may not engage in further 
distribution of the material for any profitmaking activities or any commercial gain. You 
may freely distribute both the url (http://strathprints.strath.ac.uk) and the content of this 
paper for research or study, educational, or not-for-profit purposes without prior 
permission or charge. You may freely distribute the url (http://strathprints.strath.ac.uk) 
of the Strathprints website.   
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 

http://strathprints.strath.ac.uk/27565/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk


Surface Science of Soft Scorpionates 
DOI: 10.1021/ic9014898 

Dawn Wallace, Edward J. Quinn, David R. Armstrong, John Reglinski*, Mark D. Spicer, W. 

Ewen Smith. 

 

WestChem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 

Cathedral Street, Glasgow, G1 1XL, U.K.   

 

To whom correspondence should be addressed.  

 

E-mail: j.reglinski@strath.ac.uk/m.d.spicer@strath.ac.uk 

Tel 44-141-548-2349/2800 

Fax 44-141-548-4822 

 
Abstract 

 

The chemisorption of the soft scorpionate Li[PhTmMe] onto silver and gold surfaces is 

reported.  Surface enhanced Raman spectroscopy in combination with the Raman analysis of 

suitable structural models; viz [Cu(κ3-S,S,S-PhTmMe)(PCy3)], [Ag(κ3-S,S,S-PhTmMe)(PCy3)], 

[Ag(κ2-S,S-PhTmMe)(PEt3)] and [Au(κ1-S-PhTmMe)(PCy3)] are employed to identify the 

manner in which this potentially tridentate ligand bind to these surfaces.  On colloidal silver 

SERS spectra are consistent with PhTmMe binding in a didentate fashion to the surface, 

holding the aryl group in close proximity to the surface.  In contrast, on gold colloid, we 

observe that the species prefers a monodentate coordination in which the aryl group is not in 

close proximity to the surface.   
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Introduction 

Colloids prepared from silver and gold have become extremely important in analytical 

biotechnology and trace analysis [1].  Their use in combination with vibrational spectroscopy, 

particularly surface enhanced resonance Raman spectroscopy (SERRS), allows the detection 

of analytes such as DNA and explosives present at very low concentrations (~10-12 – 10-13 M) 

in complex and heterogeneous samples [2].  However, the detection of these species is highly 

dependant on the analyte adhering to the roughened metal surface [3].  These interactions are 

typically sustained by polar forces or the dielectric constant of the surface layer.  However, if 

the analyte does not contain a suitable functional group (e.g. pyridine, benzotriazole) with 

which it can form a durable interaction with the surface it is common to provide a surface 

modifier which assists the binding process [1-3]. The nature of the surface modifiers 

commonly used reflect the nature of the analyte.  As such, citrate is widely used for proteins 

[4], spermine for DNA [5] and thiolates for the fabrication of self assembled monolayers [6].  

While citrate and spermine are highly stable species, thiolates can be prone to oxidation and 

surface migration.  Thus, although sulfur donors are acknowledged to be highly compatible 

with the noble metal surfaces used in many of the current applications of colloid technology, 

their chemical behaviour can be expected to affect commercial application as the drive for 

precision, accuracy, reproducibility and longevity increases. 

 
Figure 1.  The structure of tris(methimazolyl)borato (R = H, Ph: TmMe, PhTmMe) and 
tris(thiazolyl)borato anions (Tz) [8].   
 

The unwanted reactivity of the sulfur atom in thiolate based surface modifiers can be 

reduced by using alternative sulfur based functional groups such as disulfides, thioethers, 

dithiocarbamates and thiones [7].  The latter attracted our attention some years ago as a result 

of our interest in the chemistry of sulfur based tripodal thione donors species (TmMe, Tz; 

figure 1) [8].  These borate based tripodal species contain a negative charge which is not 

centred on the sulphur donors.  It is thus possible to maintain an interaction between the 
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thione modifier and the metal surface but to limit the problematic redox properties found in 

many sulphur donors (e.g. thiolates).  Furthermore, these species are polydentate and thus can, 

potentially, have a larger footprint on the colloid surface than the uni-dentate thiolate species 

currently used, mitigating problems of modifier migration on the surface.  

 

In our previous study [9] on the use of silver colloid with TmMe and Tz (Figure 1) we 

used hemin to show that these species had attached to the surface and that they performed as 

surface modifiers.  Hemin alone is not readily adsorbed onto colloid surfaces and normally 

does not give surface enhanced Raman spectra. In the presence of our surface modifying 

ligands, however, surface enhancement was observed suggesting that it interacts with the 

modifier. It was further inferred that the modifier was bonded to the surface in a didentate 

mode leaving a thione donor group free to interact with the hemin thus tethering it close 

enough to the surface for enhancement to occur.  Since this preliminary report on the 

deposition of TmMe and Tz on silver colloid [9], the chemistry of this ligand system, including 

their reactions with the coinage metals, has advanced markedly [10, 11]. The coordination 

chemistry of RTmR with gold, silver and copper indicate that the relationship of the ligand to 

this group of metals follows the expected trend.  It forms monodentate complexes with gold, 

trigonal and tetradentate complexes with silver and copper. Crucially a small number of novel 

dimetallic and trimetallic species have now been reported [11].  These complexes are viable 

models for the manner in which these species might deposit on surfaces whereby the donor 

thiones distribute themselves amongst adjacent metals.  However, this chemistry also suggests 

that these ligands will interact differently with colloids of different metals.  

 
Figure 2.  Schematic representations of the di and trimetallic complexes of RTmR.  The dotted lines 

represent the imidazolyl units which connect the boron to the thione donors [11]. 
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Concurrent with our preliminary studies using silver colloid, Santos et al. reported the 

synthesis of PhTmMe (figure 1) which has an aryl group bonded to the apical boron [12].  This 

modification introduces a valuable reporting moiety directly onto the boron which should be 

detected by vibrational analysis.  Coupling our increased understanding of the coinage metal 

coordination chemistry of these species with the availability of a suitable spectral marker, it 

should now be possible to investigate the deposition of these species on surfaces, assign their 

complexation modes and probe the differences which occur between gold and silver.  The 

increased footprint of these tripodal species suggested that we should extend this survey to 

copper in the hope that this material may be stabilised in colloidal form. 

 

Experimental 

All experiments were carried out using standard apparatus and commercially available 

chemicals except for [Cu(PCy3)2Cl], [Ag(PCy3)2Cl] and [Au(PCy3)Cl] which were 

synthesised according to literature methods [13].  Unless otherwise stated reactions and 

recrystallisations were carried out in air using commercially available solvents and chemicals.  
1H and 13C NMR data were acquired at ambient temperature on Bruker DPX or AVANCE 

NMR spectrometers operating at a proton resonance frequency of 400.13 MHz.  Crystals for 

X-ray analysis were coated in mineral oil and mounted on glass fibres. Data were collected at 

120 K on a Nonius Kappa CCD diffractometer using graphite monochromated Mo/Kα 

radiation. The heavy atom positions were determined by Patterson synthesis (Au) and direct 

methods (Ag, Cu) and the remaining atoms located in difference electron density maps. Full 

matrix least-squares refinement was based on F2, with all non-hydrogen atoms anisotropic. 

While hydrogen atoms were mostly observed in the difference maps, they were placed in 

calculated positions riding on the parent atoms. The structure solution and refinement used the 

programs SHELX-86, SHELX-97 [14] and the graphical interface WinGX [15].  A summary 

of the crystallographic parameters are shown in Table 1.  

 

Vibrational spectra were collected using either the 514 nm line of a Spectra Physics argon ion 

laser coupled with a Renishaw inVia Raman microscope or the 632 nm line of a Spectra 

Physics helium-neon laser coupled with a Renishaw inVia Raman microscope.  All spectra 

were acquired using approximately 20 mW laser power, three 10 second accumulations and a 

50× long working distance Olympus microscope objective. Each spectrum was normalised 

against a silicon reference and baseline corrected using GRAMS software. 
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Synthesis of [Cu(PhTmMe)(PCy3)]:  LiPhTmMe (66 mg, 0.15 mmol) was dissolved in MeOH 

(10 mL) and [Cu(PCy3)2Cl] (100 mg, 0.15 mmol) was added.  The reaction was stirred at 

room temperature for 1 h.  The white solid was filtered.  Yield: 78 mg, (67%).  X-ray quality 

crystals were grown by slow vapour diffusion of CHCl3/Et2O.  Anal.  Calcd. for 

C36H53BCuN6PS3: C, 56.05; H, 6.93; N, 10.89.  Found: C, 56.01; H, 7.27; N, 10.85.  1H NMR 

(CDCl3, 400 MHz): δ 7.58 (d, 2H, Ph), 7.25 (m, 3H, Ph), 6.81 (d, 3H, CH), 6.65 (d, 3H, CH), 

3.56 (s, 9H, CH3), 1.78 (br m, 15H, Cy), 1.23 (br m, 15H, Cy).  13C NMR (CDCl3, 100 MHz): 

δ 162.8 (s, >C=S), 134.9 (s, Ph), 128.2 (s, Ph), 127.1 (s, Ph), 126.7 (s, Ph), 123.4 (s, CH), 

117.6 (s, CH), 34.8 (s, CH3), 32.5 (d, Cy, J(31P, 13C) 44.0 Hz), 30.3 (d, Cy, J(31P, 13C) 16.0 

Hz), 27.8 (d, Cy, J(31P, 13C) 44.0 Hz), 26.6 (s, Cy). 31P NMR (CDCl3, 161 MHz): δ -11.3 (br). 

 

Synthesis of [Ag(PhTmMe)(PCy3)]:  Due to the light sensitive nature of silver compounds the 

reaction and subsequent crystallisation were carried out in vessels covered with aluminium 

foil.  LiPhTmMe (81 mg, 0.19 mmol) was dissolved in MeOH (10 mL) and [Ag(PCy3)2Cl] 

(107 mg, 0.15 mmol) was added.  The reaction was stirred at room temperature for 12 h.  The 

white solid was filtered.  Yield: 101 mg, (65%).  X-ray quality crystals were grown by slow 

vapour diffusion of CH3CN/Et2O.  Anal.  Calcd. for C36H53AgBPN6S3.½CH3CN.¼Et2O: C, 

53.55; H, 6.44; N, 10.68; S, 11.29.  Found: C, 53.20; H, 7.02; N, 10.77; S, 11.97.  1H NMR 

(CD3CN, 400 MHz): δ 7.04 (br m, 2H, Ph), 6.93 (br m, 3H, Ph), 6.62 (br d, 3H, CH), 6.58 (br 

d, 3H, CH), 3.52 (s, 9H, CH3), 1.57 (br m, 15H, Cy), 1.22 (br m, 15H, Cy).  13C NMR 

(CD3CN, 100 MHz): δ 160.9 (s, C=S), 134.1 (s, Ph), 126.2 (s, Ph), 125.7 (s, Ph), 122.5 (s, 

CH), 118.8 (s, Ph), 118.2 (s, CH), 34.4 (s, CH3), 31.2 (d, Cy, J(31P, 13C) = 44.0 Hz), 30.3 (d, 

Cy, J(31P, 13C) = 19.2 Hz), 26.7 (d, Cy, J(31P, 13C) = 44.8 Hz), 25.7 (s, Cy).  31P NMR 

(CD3CN, 161 MHz): δ 34.8 (br d, J(31P, 107/109Ag) = 1176.1 Hz).  

 

Synthesis of [Au(PhTmMe)(PCy3)]:  LiPhTmMe (100 mg, 0.23 mmol) was dissolved in 

MeOH (10 mL) and [Au(PCy3)Cl] (118 mg, 0.23 mmol) was added resulting in a colour 

change from colourless to orange.  The reaction was stirred at room temperature for 1 h.  The 

off white solid was filtered.  Yield: 110 mg, (53%).  Anal.  Calcd. for C36H53AuBN6PS3: C, 

47.79; H, 5.90; N, 9.29; S, 10.63.  Found: C, 47.11; H, 6.10; N, 9.19; S, 10.57.  1H NMR 

(CDCl3, 400 MHz): δ 7.01 (m, 2H, Ph), 6.81 (br m, 3H, Ph), 6.70 (d, 3H, CH), 6.66 (s, 3H, 

CH), 3.67 (s, 9H, CH3), 2.07 – 1.75 (br m, 15H, Cy), 1.46 – 1.22 (br m, 15H, Cy).  13C NMR 

(CDCl3, 100 MHz): δ 134.7 (s, Ph), 126.6 (s, Ph), 126.1 (s, Ph), 124.9 (s Ph), 117.6 (s, CH), 

115.6 (s, CH), 35.3 (s, CH3), 33.6 (d, Cy, J(31P, 13C) = 112.0 Hz), 31.0 (s, Cy), 27.2 (d, Cy, 
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J(31P, 13C) = 48.0 Hz), 26.0 (s, Cy). The >C=S typically observed at circa 160 ppm is too 

weak to be unequivocally assigned. 31P NMR (CDCl3, 161 MHz): δ 58.2. 

 

Empirical formula  C36H53BCuPN6S3 C38H54.5AgBN6.5O0.25PS3 
Formula weight  771.39 852.19 
Temperature  120(2) K 123(2) K 
Wavelength  0.71073 Å 0.71073 Å 
Crystal system  Triclinic Triclinic 
Space group  P-1 P-1 
Unit cell dimensions a = 9.8533(2) Å 

α = 90.410(1)o 
a = 15.0658(2) Å 
α = 78.009(1)° 

 b = 10.0078(2) Å 
β = 94.723(1)°. 

b = 15.8277(3) Å 
β = 85.861(1)°. 

 c = 19.8773(4) Å 
γ = 106.028(1)°. 

c = 18.2787(4) Å 
γ = 83.389(1)°. 

Volume 1876.59(7) Å3 4230.00(13) Å3 
Z 2 4 
Absorption 
coefficient 

0.827 mm-1 0.695 mm-1 

Reflections collected 37707 37740 

Independent 
reflections  

8616 [R(int) = 0.0608] 19400 [R(int) = 0.0367] 

Goodness-of-fit on F2 1.031 0.979 
Final R indices 
[I>2sigma(I)] 

R1 = 0.0411, wR2 = 0.0915 R1 = 0.0378, wR2 = 0.0994 

No of parameters 436 944 
 

Table 1: Crystallographic data. 

 

Preparation of silver colloid [16]:  In a 1000 mL round bottom flask, 500 mL of distilled 

water was heated to 40°C with a Bunsen burner. A solution of silver nitrate (90 mg in 10 mL 

distilled water) was added to the water and heated rapidly to 98 °C with constant stirring. 

Once the solution had reached 98 °C a solution of sodium citrate (110 mg in 10 mL distilled 

water) was added rapidly, and the solution maintained at 98 °C for 90 minutes with 

continuous stirring.  The nanoparticles produced were consistent with those reported 

previously (<35 nm diameter) [16] 

 

Preparation of gold colloid [17]:  50 mg of sodium tetrachloroaurate was added to 500 mL 

of distilled water in a 1000 mL round bottom flask. The solution was heated to boiling point 

with constant stirring. 7.5 mL of a 1% solution of trisodium citrate was then added. The 

temperature of the solution was maintained at boiling point for 15 mins and then allowed to 
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cool to room temperature with continuous stirring.  The nanoparticles produced were 

consistent with those reported previously (15-20 nm diameter) [17] 

 

Surface enhanced resonance Raman spectra.  All colloid samples were prepared and 

analysed in microtitre plates with a sample volume of 250 µL by mixing 30 µL poly-L-lysine 

(0.01% w/v), 870 µL 50:50 (v/v) colloid: distilled water, and 100 µL 1 x 10-2 M ligand 

solution. Giving a final ligand concentration of 1 x 10-3 M.    

 

Density Functional Theory (DFT) molecular orbital calculations: Calculations were 

performed using the Gaussian 03 program [18]. The molecular species were subjected to 

geometry optimisation at the DFT [19] level and the 6-311G** basis set [20] for the atoms C, 

N, O, S, B and H.  For Silver, the Stuttgart RSC basis set was used [21].  Preliminary 

calculations were carried out using the DFT functionals BLYP and B3LYP [22].  The best 

agreement with respect to the experimental Raman frequencies was obtained using the BLYP 

functionals and hence these were used for the rest of the molecules. 

 

Results and Discussion 

Li[PhTmMe]  +  M(PR3)nCl  ⎯⎯⎯→  [M(PhTmMe)(PR3)]  +  LiCl   –(1) 
M = Cu, R = cyclohexyl, n = 2: M = Ag, R = cyclohexyl, ethyl, n= 2:  M = Au, R = cyclohexyl, n = 1 
 

 
Figure 3.  The X-ray crystal structure of [Ag(κ3-S,S,S-PhTmMe)(PCy3)].  The thermal ellipsoids are 
drawn at 50% probability.  The metrical parameters of this complex and its copper analogue can be 
found in the supplementary material. 
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A series of model complexes, viz [Cu(κ3-S,S,S-PhTmMe)(PCy3)], [Ag(κ3-S,S,S-

PhTmMe)(PCy3)], [Au(κ1-S-PhTmMe)(PCy3)] and [Ag(κ2-S,S-PhTmMe)(PEt3)], were initially 

constructed (eq 1).  These complexes were designed to provide representative examples of the 

manner in which these soft tripodal ligands coordinate with coinage metals.  Tricyclohexyl- 

and triethylphosphine were chosen as supporting ligands in these complexes because the ethyl 

and cyclohexyl groups are not expected to significantly contribute to the Raman spectra 

especially in the aromatic region and will not be subject to significant enhancement at the 

colloid surfaces.  Since the chemistry of the coinage metals with these species has previously 

shown great structural variation [10, 11], it was important to structurally characterise the three 

new tricyclohexylphosphine (PCy3) adducts prior to their use as surface modifiers.   

 

Both [Cu(PhTmMe)(PCy3)] and [Ag(PhTmMe)(PCy3)] were readily crystallised 

allowing for analysis by X-ray methods (figure 3).  Both complexes have approximately 

tetrahedral coordination geometry with the ligand adopting a κ3-S,S,S coordination mode.  

The copper complex is iso-structural with its triethylphosphine analogue [10d] whereas the 

silver complex betrays the ambivalent nature of the heavier element in that the PhTmMe ligand 

in the triethylphosphine complex is didentate resulting in a trigonal planar geometry at the 

metal.  The relationship between these two silver complexes (PEt3 versus PCy3) is counter-

intuitive in that the bulky phosphine displays the higher coordination number.  We were 

unable to obtain suitable crystals of the gold complex, [Au(PhTmMe)(PCy3)], for single crystal 

X-ray diffraction.  However, comparisons with the structurally characterised [Au(κ1-S-TmMe) 

(PEt3)] using spectroscopic methods clearly supports a linear binding mode for this species.   

 

Solid state Raman spectra of Li[PhTmMe], tricyclohexylphosphine and the four metal 

complexes [M(PhTmMe)(PR3)] (R = Cy, M = Cu, Ag, Au; R = Et, M = Ag) were recorded  

(figure 4).  Using DFT calculations the prominent bands in the Raman spectrum of the 

[PhTmMe]- anion were assigned as shown in table 2. Most of the modes are complex in nature, 

but we have attempted in our assignments to reflect the dominant component. The key 

vibrational modes are those at 1565 cm-1 which is predominantly an aryl C=C stretch [23]; 

bands a 1371, 1302 and 1283 cm-1 which are assigned to C-N stretches in the methimazole 

rings;  a band at 1001 cm-1 which is an aryl ring breathing mode; a band at 712 cm-1 which 

arises from N-CH3 stretching and associated methimazole ring breathing; and lastly a band at 

535  
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Figure 4 Top left: The Raman spectrum of solid PhTmMe, (514 nm, 20 mW).   Top right: The Raman spectrum of solid PCy3, (514 nm, 20 mW).   
Middle left: The Raman spectrum of solid [Cu(PhTmMe)(PCy3)], (632 nm, 20 mW).  Middle right : The Raman spectrum of solid 
[Ag(PhTmMe)(PCy3)], (514 nm, 20 mW).  Bottom left: The Raman spectrum of solid [Au(PhTmMe (PCy3)], (632 nm, 20 mW).  Bottom right; The 
Raman spectrum of solid [Ag(PhTmMe)(PEt3)], (632 nm, 20 mW).  
 

 ν(C=S) cm-1 ν(N-CH3) ν(C=C) (Ph) ν(C-N) (mt) Aromatic cm-1

[PhTmMe]- 535 712 1001 1283, 1302, 1371 1565 
Cu(κ3-S,S,S-PhTmMe)(PCy3) 533 705 999 1275,1292,1312,1371 1572 
Ag(κ3-S,S,S-PhTmMe)(PCy3) 530 711 995 1290, 1301, 1314, 1367 1567,1575 

Ag(κ2-S,S-PhTmMe)(PEt3) 532 714 1001 1309 (br) 1372 1567 
Au(κ1-S-PhTmMe)(PCy3) 519,540 713 1000 1263,1276,1314,1377 1563 

 
Table 2.  The key vibrational frequencies derived from PhTmMe as the free anion and in its complexes with the coinage metals. The assignments were confirmed 
using DFT calculations [18-22]. 
 



cm-1 which is the isolated C=S stretch. The remaining, weaker bands arise from CH3 

deformations (1406, 1453 and 1471 cm-1) and aryl /methimazole C-H bending modes (1032 – 

1152 cm-1). It is clear from table 2 that these bands are essentially invariant on complexation, 

and this has been confirmed by DFT calculations on the silver complexes which show only 

small shifts in band positions, but do reveal some splitting of bands and changes in intensity. 

These differences are particularly prominent in the region between 1250 and 1400 cm-1 and 

are also present in the experimental Raman spectra. This is probably due to the changes in 

symmetry imposed by the different coordination modes of the ligand.  In tridentate, κ3-

coordination, these bands are resolved into a group of three/four, whereas for didentate (κ2) 

and unidentate (κ1) forms, which are less geometrically constrained, a broader envelope of 

bands centred on one dominant frequency is observed.  

 

 
Figure 5  The SERS spectrum of PhTmMe deposited on silver colloid, (514 nm, 20 mW). 

 
Silver colloid was modified by addition of Li[PhTmMe] and the SERS spectrum 

obtained.  The spectrum shows that the thione donor has been chemisorbed on the silver 

surface (figure 5). The spectrum is again dominated by bands in two frequency ranges namely 

ca 1300 - 1370 cm-1 and ca 1550 - 1650 cm-1.  The band due to the >C=S moiety is very 

weak, possibly occurring at around 500 cm-1, a lower frequency than in the complexes, and on 

the edge of  the observed spectral window. This is in keeping with a significant interaction 

with the surface. The resonances observed for the methimazole rings appear in the expected 
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region, however, their number and distribution is reminiscent of the spectrum of 

[Ag(PhTmMe)(PEt3)] thus suggesting a didentate binding mode (figure 4) rather than the 

tridentate mode observed in the solid PCy3 complex.  Furthermore, comparison of the spectra 

obtained here for the PhTmMe anion with that reported previously for the TmMe anion reveals 

a great deal of similarity between the two species when deposited on the silver surface, again 

suggesting a didentate binding mode for the TmMe anion on the silver surface [9].  The relative 

intensity of the band assigned to the aromatic group is greater on surface deposition and other 

related vibrations are also enhanced to give a more complex spectrum in this region (figures 

4, 5). This implies that the phenyl group is able to approach the surface sufficiently closely for 

the associated Raman bands to undergo surface enchancement.  The additional bands in this 

region are likely to be other stretching modes of the phenyl ring system which have been 

selectively enhanced as a consequence of the surface selection rules of SERS. This provides 

further evidence that this is indeed a SERS rather than a Raman spectrum, a fact already clear 

from the intensity of what is effectively a monolayer.  In the absence of any symmetry 

considerations, the basic SERS selection rule states that intense scattering arises from 

vibrations which involve large changes in polarisability perpendicular to the plane of the 

surface. At about 1600 cm-1, if the plane of the molecule is perpendicular to the surface plane, 

one mode, a quadrant stretch of the phenyl ring, would be dominant as it is in the Raman 

spectra of the complexes. The fact that a number of modes are enhanced suggests that the 

phenyl ring is at an angle to the surface or possibly parallel to it.  

 

B

N

N

N

N

NN

S

S S

Colloid surface

Ag atoms

 
Figure 6.  The postulated didentate orientation of PhTmMe on Ag colloid surface which 

facilitates an interaction of the phenyl moiety with the colloid surface. 
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Figure 7 The SERS spectrum of PhTmMe deposited on gold colloid, (632 nm, 20 mW).  The lower 

signal to noise ratio is ascribed to the poorer surface enhancement at gold (c.f. silver) 

 

The SERS spectrum of PhTmMe deposited on gold colloid has only two distinct, high 

intensity resonances at 1316 cm-1 and 1367 cm-1. They are of approximately equal strength, 

and are assigned to vibrations in the methimazole rings (figure 7).  Although the spectrum 

obtained from PhTmMe deposited on gold colloid and solid [Au(PhTmMe)(PCy3)] have 

roughly co-incident bands in this region, their absolute and relative intensities have changed, 

most probably due to the influence of the surface.  This would indicate that the structure of 

the solid gold complex, i.e. monodentate and linear, is upheld at the colloidal surface (figure 

8).  However, this mode of binding potentially allows the phenyl group to come into close 

proximity with the colloid surface.  Thus the absence of a relevant band (~1600 cm-1) 

suggests that any interaction of this type is very weak due to rapid rotation of PhTmMe on the 

surface, a process which would be allowed by unidentate coordination.  The presence of only 

one methimazole in close proximity to the surface would also explain the general weakness 

and breadth of the methimazole bands. 

 

Considering known structures of gold R’TmR complexes, an alternative model can be 

envisaged, where each of the three sulfur atoms coordinate to a different gold atom on the 

colloid surface (figure 8).  An overall tridentate coordination mode would be achieved leading 
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to the phenyl group being remote from the surface, reducing the intensity of the aryl 

resonance in the SERS spectrum.  Coordination of TmR ligands over three separate gold 

atoms has been demonstrated by Rabinovich in [Au3(TmtBu)2]+ (figure 1) [11c].  However, 

this mode of binding requires the inversion of the TmMe ligand at the boron atom forcing the 

hydridic proton into the core of the metal triangle.  This configuration is not possible for 

PhTmMe (for obvious steric reasons) and the ligand would thus be forced to adopt a 

configuration with the phenyl group remote from the surface. Such a configuration would be 

similar to that of the synthetic models, [Cu(PhTmMe)(PCy3)] and [Ag(PhTmMe)(PCy3)] except 

that three metal centres rather than one would be used to achieve binding.  This configuration 

would have a similar symmetry to the two tridentate complexes and we would thus expect to 

see a more intense spectrum and bands of disparate intensity between 1300 cm-1 and 1380 cm-

1. However, this structure would also be highly strained and we consider it unlikely to occur.  

 

In order to probe this further we also obtained the spectrum of the parent TmMe anion 

deposited on gold colloid (Figure 9). The spectrum consists of a single intense band at 1372 

cm-1 accompanied by broad, weak bands at approximately 1327 and 1560 cm-1. This seems 

more closely allied to the spectrum of the didentate ligand on silver colloid. It is possible that 

the borohydride can interact with the metal surface [9]. This would be a stronger, more 

directed interaction than that of the phenyl group in PhTmMe and may result in constraint of 

the methimazoles close to the surface resulting in a didentate mode. 

B
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Figure 8.  The orientations of PhTmMe on gold colloid surface: (left) monodentate on one 

individual gold atom, (right) monodentate on three individual gold atoms, with the phenyl 

moiety remote from the colloid surface. 
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Figure 9. The SERS spectrum of TmMe deposited on gold colloid (632 nm, 20 mW). 
 

Technologies based on silver and gold colloid are well developed, but copper colloid 

has not received as much attention due to problems with its stability.  We had hoped that the 

strong affinity of these soft tripodal thione species for copper and their ability to span metal 

centres (figure 2) would assist the stabilisation of copper colloid.  However, despite protracted 

efforts adding TmMe and PhTmMe both pre and post colloid formation [24], we were unable to 

extend the lifetime of this elusive material. 

 

Concluding remarks 

The study supports the view that the tripodal thione species PhTmMe and TmMe are 

good surface modifiers for silver and gold colloid.  However their relationship with the two 

metal surfaces is different.  With gold the surface modifier is unidentate and with silver it is 

didentate.  It is envisaged that eventually the phenyl group will be replaced by a more 

apposite sensing molecule or a selective coupling agent.  Should detection be linked to 

surface enhancement then the surface of choice would probably be silver as this study predicts 

that with this material the analyte would be brought into close proximity to the surface.   

 

 

 15



Acknowledgements 

D.W. thanks the EPSRC and University of Strathclyde Doctoral Training Account for 

financial support. 
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Footnote 
§A more complete description of the results of the DFT calculations is given in the 

supplementary information. 
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Structural Analysis of [Cu(κ3-S,S,S-PhTmMe)(P(Cy)3)], [Ag(κ3-S,S,S-PhTmMe)(P(Cy)3)] 
and related compounds.   

Figure S1.  The X-ray crystal structures of [Cu(PhTmMe)(PCy3)] (left) and [Ag(PhTmMe)(PCy3)] (right, 

hydrogen atoms omitted for clarity).  Selected bond lengths (Å) and angles(º) for these complexes and 

the related M(Tm)PR3 species can be found in table S1:  Additional bond angles for copper: S(1)-Cu-

S(2)103.67(2), S(1)-Cu-S(3) 104.13(2), S(2)-Cu-S(3) 98.69(2) and silver; S(1)-Ag-S(2) 96.33(2), 

S(1)-Ag-S(3) 97.07(2), S(2)-Ag-S(3) 99.13(2). 

  

 
X-ray crystallography analysis reveals that both Cu(PhTmMe)(PCy3) and Ag(PhTmMe)(P(Cy)3 

(Figure S1) have pseudo-tetrahedral geometry (S3P) with the ligand adopting a κ3-S,S,S 

conformation.  The analogous [Cu(PhTmMe)(PPh3)] complex has been previously synthesised 

and also has pseudo-tetrahedral geometry [11d].  The [Cu(PhTmMe)(PPh3)] complex exhibits 

a high degree of asymmetry which is reflected in the inequivalence of the Cu-S bond lengths 

(table S1).  In comparison, the complex reported here is more symmetrical with all the Cu-S 

distances being essentially equal, a situation that is also observed in the analogous 

[Cu(TmMe)(PR3)] complexes (where PR3 = P(o/m-tolyl)3) [10d] along with Bailey’s 

[Cu(TmEt)(PPh3)] [10c] and Patels’s [Cu(TmtBu)(PPh3)] complexes [11a]. In contrast to 

Cu(PhTmMe)(P(Cy)3, the κ3-S,S,S motif is somewhat unusual for silver. Both 

[Ag(TmMe)(PCy3)] [10b] and [Ag(PhTmMe)(PEt3)] [11d] have been previously synthesised 
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and exhibit the more common didentate coordination (table S1). The [Ag(TmMe)(PCy3)] 

complex has an interaction from the hydride moiety which is attributed to the bulky PCy3 

ligand preventing the third sulfur atom from coordinating.  Replacement of the BH moiety 

with a phenyl group in PhTmMe evidently eliminates the possibility for hydride interaction, 

however, the electronic and steric effect of the ligand alone do not impose κ3 coordination, as 

is observed in the [Ag(PhTmMe)(PEt3)] complex [11d], where the ligand remains coordinated 

in κ2 mode.  Peculiarly, the complex reported here incorporates both the PhTmMe ligand and 

the bulky PCy3 coligand, producing a complex with tridentate coordination, indicating that 

there is a subtle relationship between the RTmMe ligand and phosphine auxiliary ligand.  The 

Ag-P bond length in the complex reported here (table S1) is typical of such complexes.  As is 

seen in the analogous complexes there is a degree of asymmetry with the Ag-S distances of 

2.5692(8), 2.6337(8) and 2.6381(7) Å being observed.  However, these bond lengths are 

similar to those observed in the analogous [Ag(TmMe)(PCy3)] and [Ag(PhTmMe)(PEt3)] 

complexes (table S1) [10b, 11d].   

 
 Coord Mode M-S (Å) M-P (Å) <S-M-P (o) ref 

Cu(TmMe (mTol)3 )P κ3-S,S,S- 2.357 2.217 114.00 10d 
Cu(TmMe)P(pTol)3 κ3-S,S,S- 2.332 2.226 111.75 10d 
Cu(Tm )PPh3 Et κ -S,S,S- 3 2.387 2.229 115.83 10c 
Cu(Tm )PPh3 tbu κ -S,S,S- 3 2.353 2.221 114.02 11a 
Ag(Tm )P Pr3 Me i κ -S,S,S- 3 2.595 2.404 118.19 10a 
Ag(Tmtbu)PPh3 κ -S,S,S- 3 2.590 2.424 119.90 11a 
Ag(Tm )PCy3 Me κ -S,S- 2 2.603 

2.581 
2.420 126.37 

119.67 
10b 

Au(Tmtbu)PPh3 κ2-S,S- 2.646 
2.349 

2.247 102.98 
159.30 

11a 

Cu(PhTmMe)PPh3 κ3-S,S,S- 2.352 
2.354 
2.410 

2.199 109.95 
111.06 
120.31 

11d 

Ag(PhTmMe)PEt3 κ2-S,S- 2.378 124.85 11d 2.463 
2.587 135.86 

Au(PhTmMe)PEt3 κ1-S- 2.333 2.268 171.54 11d 
      
Cu(PhTmMe)PCy  3 κ 2.3842(6) 2.2268(6) 118.98(2) 3-S,S,S- 

2.3762(6) 
2.3889(6),

 110.28(2) 
118.34(2) 

This 
work 

Ag(PhTmMe)PCy3 κ3-S,S,S- 2.3959(8)2.5692(8) 
2.6337(8) 
2.6381(7) 

125.89(3) 
119.39(3) 
113.77(2) 

This 
work 

 
able S1. Tthe metrical parameters aroun e metal centre f  of complexes 
(RTmR’)PR3 

T
M

d the coinag or the family
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In order to make a more definitive assignment of the vibrational spectra of these species, a 

computational study was undertaken. The the structures of the PhTmMe anion and two fragments, 

[Ag(κ2-S,S-PhTmMe)] and [Ag(κ3-S,S-PhTmMe)] were optimised and their vibrational spectra 

calculated. The structures of the optimised fragments are shown below (Figure S2) and the calculated 

Raman spectra are shown in Figue S3a-c, along with the observed solid state Raman spectra of 

structurally comparable complexes. The Raman vibrations from the calculated spectra, together with 

their assignment, are shown in Table S2. The vibrational modes are, on the whole, complex in nature 

and, although an attempt has been made to describe the major components, they are by no means 

complete descriptions. The Gaussian 03 output files can be requested from the authors if the reader 

wishes to inspect these in more detail. 

 

Figure S2: Calculated structures of the PhTmMe anion (below, left), [Ag(PhTmMe)(PH3)] (below right) 

the [Ag(κ2-S,S-PhTmMe)] fragment (above, left) and the [Ag(κ3-S,S,S-PhTmMe)] fragment (above 

right). 

 

Computational Study 
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Table S2: Calculated vibrational frequencies (cm-1), correlation with observed bands and assignments. 
 
PhTmMe 
Calcd 

[Ag(κ2-PhTmMe)] 
Calcd. 

[Ag(PhTmMe)(PEt3)] 
Observed 

[Ag(κ3-PhTmMe)] 
Calcd. 

[Ag(PhTmMe)(PCy3)] 
Observed 

[LiPhTmMe 
Observed 

Ag(PhTm)(PH3)] 
Calcd 

Assignment 

523 535 491/495/526 532 509 530 515 ν(C=S) 
579 613  622/636  607/616  o ion /618 mt out of plane ring def rmat
620 635   645  6 o ion 45 mt out of plane ring def rmat
699 712 687 690/714 691 677 6 h92 ν(N-CH3)/ mt ring breat ing 
987 1001 988 1001 970/987 995 988 Ph ring breathing 
1023 1032  1041 1015/1026 1028 1 g014/1026 Ph C-H rockin  
1068 1090  1091 1070  1 g071 Ph C-H rockin  
      1105 PH3 P-H bending 
1124 1152 1149/1160 1153 1113 1130 1 (C=S) 154 mt C-H deformation + ν
1202 1188 1192 1187 1201 1186/1201 1  208 mt ν(C-N)
    1228 1268 1226 mt ν(C-N) 
1265/1272 128 1261/1273 1309 1267 1290/1301/1314 1268 3/1301 mt ν(C-N) 
1325 1371 1319 1372 1324 mt ν(C-N) 1322 1367 
1384 1385 1405 1391 mt C-C-H 140 1389 1411 6 Me H-C-H bending/ 

bending 
1428 1453 1433/ 1436 1440 1437 Me H-C-H bending 1442 1460 
1480 147 1475  1477  1477 e Ph C-C-H 1 Me H-C-H b nding/ 

bending 
1547 1565 1535/1550 1567 1546 1567/1575 1549  Ph ν(C=C) / mt ν(C=C)
1572 1592 1574 1595 1571 1591 1572 Ph ν(C=C) 
        
        
        
mtH = methimaz
 

ole 
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Figure S3a: Calculated (above) se n Spectra of PhTmMe.  and Ob rved (below) Rama

 



 

 
 

 
Figure S3b: Calculated Raman Spectrum of [Ag(κ2-S,S-PhTmMe)] (above) and Observed Raman 
spectrum of [Ag(κ2-S,S,-PhTmMe)(PEt3)]. 
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Figure S3c: Calculated Raman Spectrum of [Ag(κ3-S,S,S-PhTmMe)] (above) and the observed Raman 
spectrum of [Ag(PhTmMe)(PCy3)] (below). 
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Figure S3d: Calculated Raman spectrum of [Ag(PhTmMe)(PH3)]. 
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