873 research outputs found
Intrauterine exposure to mild analgesics during pregnancy and the occurrence of cryptorchidism and hypospadia in the offspring: The Generation R Study
This article is available open access through the publisher’s website. Copyright @ 2012 The Authors.BACKGROUND - Recently, over-the-counter mild analgesic use during pregnancy has been suggested to influence the risk of reproductive disorders in the offspring. We examined the influence of maternal exposure to mild analgesics during pregnancy on the occurrence of cryptorchidism and hypospadia in their offspring.
METHODS - Associations between maternal exposure to mild analgesics during pregnancy and cryptorchidism or hypospadia in the offspring were studied in 3184 women participating in a large population-based prospective birth cohort study from early pregnancy onwards in the Netherlands (2002–2006), the Generation R Study. Cryptorchidism and hypospadia were identified during routine screening assessments performed in child health care centres by trained physicians. The use of mild analgesics was assessed in three prenatal questionnaires in pregnancy, resulting in four periods of use, namely, periconception period, first 14 weeks of gestation, 14–22 weeks of gestation and 20–32 weeks of gestation. Logistic regression analyses were used to study the associations between maternal exposure to mild analgesics and cryptorchidism and hypospadia.
RESULTS - The cumulative prevalence over 30 months of follow up was 2.1% for cryptorchidism and 0.7% for hypospadia. Use of mild analgesics in the second period of pregnancy (14–22 weeks) increased the risk of congenital cryptorchidism [adjusted odds ratio (OR) 2.12; 95% confidence interval (CI) 1.17–3.83], primarily due to the use of acetaminophen (paracetamol) (adjusted OR 1.89; 95% CI 1.01–3.51). Among mothers of cryptorchid sons, 33.8% reported (23 of 68) the use of mild analgesics during pregnancy, compared with 31.8% (7 of 22) of mothers with a boy with hypospadia and 29.9% (926 of 3094) of mothers with healthy boys.
CONCLUSIONS - Our results suggest that intrauterine exposure to mild analgesics, primarily paracetamol, during the period in pregnancy when male sexual differentiation takes place, increases the risk of cryptorchidism.Erasmus University Rotterdam, School of Law and Faculty of Social Sciences, the Municipal Health Service Rotterdam area, Rotterdam, the Rotterdam Homecare Foundation, Rotterdam and the Stichting Trombosedienst & Artsenlaboratorium
Rijnmond (STAR), Rotterdam
Quality and Safety Aspects of Infant Nutrition
Quality and safety aspects of infant nutrition are of key importance for child health, but oftentimes they do not get much attention by health care professionals whose interest tends to focus on functional benefits of early nutrition. Unbalanced diets and harmful food components induce particularly high risks for untoward effects in infants because of their rapid growth, high nutrient needs, and their typical dependence on only one or few foods during the first months of life. The concepts, standards and practices that relate to infant food quality and safety were discussed at a scientific workshop organized by the Child Health Foundation and the Early Nutrition Academy jointly with the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, and a summary is provided here. The participants reviewed past and current issues on quality and safety, the role of different stakeholders, and recommendations to avert future issues. It was concluded that a high level of quality and safety is currently achieved, but this is no reason for complacency. The food industry carries the primary responsibility for the safety and suitability of their products, including the quality of composition, raw materials and production processes. Introduction of new or modified products should be preceded by a thorough science based review of suitability and safety by an independent authority. Food safety events should be managed on an international basis. Global collaboration of food producers, food-safety authorities, paediatricians and scientists is needed to efficiently exchange information and to best protect public health. Copyright (C) 2012 S. Karger AG, Base
Dairy Consumption and the Incidence of Hyperglycemia and the Metabolic Syndrome: Results from a French prospective study, Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR)
International audienceOBJECTIVE: In the French Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) cohort, cross-sectional analyses have shown that a higher consumption of dairy products and calcium are associated with a lower prevalence of the metabolic syndrome (MetS). We assess the influence of dairy products on 9-year incident MetS and on impaired fasting glycemia and/or type 2 diabetes (IFG/T2D). RESEARCH DESIGN AND METHODS: Men and women who completed a food frequency questionnaire at baseline and after 3 years were studied (n = 3,435). Logistic regression models were used to study associations between the average year 0 and year 3 consumption of milk and dairy products, cheese, dietary calcium density, and incident MetS and IFG/T2D after adjusting for 1) sex, age, alcohol, smoking, physical activity, fat intake and 2) additionally for BMI. Associations between dairy products and continuous variables were studied by repeated-measures ANCOVA, using the same covariates. RESULTS: Dairy products other than cheese, and dietary calcium density, were inversely associated with incident MetS and IFG/T2D; cheese was negatively associated with incident MetS. All three parameters were associated with lower diastolic blood pressure, and with a lower BMI gain. Higher cheese intake and calcium density were associated with a lower increase in waist circumference and lower triglyceride levels. Calcium density was also associated with a lower systolic blood pressure and a lower 9-year increase in plasma triglyceride levels. CONCLUSIONS: A higher consumption of dairy products and calcium was associated with a lower 9-year incidence of MetS and IFG/T2D in a large cohort drawn from the general population
Flow variability and its physical causes in infusion technology: a systematic review of in vitro measurement and modeling studies
Infusion therapy is medically and technically challenging and frequently associated with medical errors. When administering pharmaceuticals by means of infusion, dosing errors can occur due to flow rate variability. These dosing errors may lead to adverse effects. We aimed to systematically review the available biomedical literature for in vitro measurement and modeling studies that investigated the physical causes of flow rate variability. Special focus was given to syringe pump setups, which are typically used if very accurate drug delivery is required. We aimed to extract from literature the component with the highest mechanical compliance in syringe pump setups. We included 53 studies, six of which were theoretical models, two articles were earlier reviews of infusion literature, and 45 were in vitro measurement studies. Mechanical compliance, flow resistance, and dead volume of infusion systems were stated as the most important and frequently identified physical causes of flow rate variability. The syringe was indicated as the most important source of mechanical compliance in syringe pump setups (9.0×10-9 to 2.1×10-8 l/Pa). Mechanical compliance caused longer flow rate start-up times (from several minutes up to approximately 70 min) and delayed occlusion alarm times (up to 117 min)
Immunometabolism pathways as the basis for innovative anti-viral strategies (INITIATE): a Marie Sklodowska-Curie innovative training network
The past century has witnessed major advances in the control of many infectious diseases, yet outbreaks and epidemics caused by (re-) emerging RNA viruses continue to pose a global threat to human health. As illustrated by the global COVID19 pandemic, high healthcare costs, economic disruption and loss of productivity reinforce the unmet medical need to develop new antiviral strategies to combat not only the current pandemic but also future viral outbreaks. Pivotal for effective anti-viral defense is the innate immune system, a first line host response that senses and responds to virus infection. While molecular details of the innate immune response are well characterized, this research field is now being revolutionized with the recognition that cell metabolism has a major impact on the antiviral and inflammatory responses to virus infections. A detailed understanding of the role of metabolic regulation with respect to antiviral and inflammatory responses, together with knowledge of the strategies used by viruses to exploit immunometabolic pathways, will ultimately change our understanding and treatment of pathogenic viral diseases. INITIATE is a Marie Sklodowska-Curie Actions Innovative Training Network (MSCA-ITN), with the goal to train 15 early stage PhD researchers (ESRs) to become experts in antiviral immunometabolism (https://initiate-itn.eu/). To this end, INITIATE brings together a highly complementary international team of academic and corporate leaders from 7 European countries, with outstanding track records in the historically distinct research fields of virology, immunology and metabolism. The ESRs of INITIATE are trained in these interdisciplinary research fields through individual investigator-driven research projects, specialized scientific training events, workshops on academia-industry interactions, outreach & communication. INITIATE will deliver a new generation of creative and entrepreneurial researchers who will be able to face the inevitable future challenges in combating viral diseases
How to use current practice, risk analysis and standards to define hospital-wide policies on the safe use of infusion technology
Infusion therapy is widely used in hospitals. It is well known that medication errors constitute one of the highest risks to patient safety, leading to numerous adverse events concerning incorrect application of infusion technology. Both clinical practice and in vitro studies show that infusion of multiple medications via one access point induces unwanted phenomena such as backflow and an incorrect system response to interventions. Within the Metrology for Drug Delivery project, we addressed the role of infusion devices in drug delivery. We surveyed current practices for application in hospitals to provide input to standards and quality norms for the materials used in infusion technology. Furthermore, we organized meetings with clinicians and other relevant stakeholders to set up a risk analysis-based infusion policy, accompanied by easy to access operating procedures on infusion technology. It was found difficult to establish clear-cut infusion safety guidelines based on quantitative data because of the many different application areas and stakeholders. However, both the expert team and the survey indicated the value of multidisciplinary qualitative discussion for defining best practices. We advise to incorporate specific requirements on infusion devices in protocols and standards, adjusted to specific applications, to ensure safe use of infusion technology
The Role of Body Mass Index, Insulin, and Adiponectin in the Relation Between Fat Distribution and Bone Mineral Density
Despite the positive association between body mass index (BMI) and bone mineral density (BMD) and content (BMC), the role of fat distribution in BMD/BMC remains unclear. We examined relationships between BMD/BMC and various measurements of fat distribution and studied the role of BMI, insulin, and adiponectin in these relations. Using a cross-sectional investigation of 2631 participants from the Erasmus Rucphen Family study, we studied associations between BMD (using dual-energy X-ray absorptiometry (DXA]) at the hip, lumbar spine, total body (BMD and BMC), and fat distribution by the waist-to-hip ratio (WHR), waist-to-thigh ratio (WTR), and DXA-based trunk-to-leg fat ratio and android-to-gynoid fat ratio. Analyses were stratified by gender and median age (48.0 years in women and 49.2 years in men) and were performed with and without adjustment for BMI, fasting insulin, and adiponectin. Using linear regression (adjusting for age, height, smoking, and use of alcohol), most relationships between fat distribution and BMD and BMC were positive, except for WTR. After BMI adjustment, most correlations were negative except for trunk-to-leg fat ratio in both genders. No consistent influence of age or menopausal status was found. Insulin and adiponectin levels did not explain either positive or negative associations. In conclusion, positive associations between android fat distribution and BMD/BMC are explained by higher BMI but not by higher insulin and/or lower adiponectin levels. Inverse associations after adjustment for BMI suggest that android fat deposition as measured by the WHR, WTR, and DXA-based android-to-gynoid fat ratio is not beneficial and possibly even deleterious for bone
Honokiol inhibits SARS-CoV-2 replication in cell culture at a post-entry step
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019, and the resulting pandemic has already caused the death of over 6 million people. There are currently few antivirals approved for treatment of the 2019 coronavirus disease (COVID-19), and more options would be beneficial, not only now but also to increase our preparedness for future coronavirus outbreaks. Honokiol is a small molecule from magnolia trees for which several biological effects have been reported, including anticancer and anti-inflammatory activities. Honokiol has also been shown to inhibit several viruses in cell culture. In this study, we determined that honokiol protected Vero E6 cells from SARS-CoV-2-mediated cytopathic effect, with a 50% effective concentration of 7.8 mu M. In viral load reduction assays, honokiol decreased viral RNA copies as well as viral infectious progeny titers. The compound also inhibited SARS-CoV-2 replication in the more relevant human A549 cells expressing angiotensin converting enzyme 2 and transmembrane protease serine 2. Time-of-addition and other assays showed that honokiol inhibited virus replication at a post-entry step of the replication cycle. Honokiol was also effective against more recent variants of SARS-CoV-2, including Omicron, and it inhibited other human coronaviruses as well. Our study suggests that honokiol is an interesting molecule to be evaluated further in animal studies and, when successful, maybe even in clinical trials to investigate its effect on virus replication and pathogenic (inflammatory) host responses.IMPORTANCE Honokiol is a compound that shows both anti-inflammatory and antiviral effects, and therefore its effect on SARS-CoV-2 infection was assessed. This small molecule inhibited SARS-CoV-2 replication in various cell-based infection systems, with up to an similar to 1,000-fold reduction in virus titer. In contrast to earlier reports, our study clearly showed that honokiol acts on a postentry step of the replication cycle. Honokiol also inhibited different recent SARS-CoV-2 variants and other human coronaviruses (Middle East respiratory syndrome CoV and SARS-CoV), demonstrating its broad spectrum of antiviral activity. The anticoronavirus effect, combined with its anti-inflammatory properties, make honokiol an interesting compound to be further explored in animal coronavirus infection models.Molecular basis of virus replication, viral pathogenesis and antiviral strategie
- …